Home
Class 14
MATHS
If N=sqrt""9+sqrt""7, then what is the v...

If `N=sqrt""9+sqrt""7`, then what is the value of `(1//N)`

A

`sqrt""9-sqrt""7`

B

`2(sqrt""9-sqrt""7)`

C

`(sqrt""9-sqrt""7)//2`

D

`4(sqrt""9-sqrt""7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{N} \) where \( N = \sqrt{9} + \sqrt{7} \). ### Step-by-Step Solution: 1. **Identify the value of N**: \[ N = \sqrt{9} + \sqrt{7} \] We know that \( \sqrt{9} = 3 \), so: \[ N = 3 + \sqrt{7} \] 2. **Write the expression for \( \frac{1}{N} \)**: \[ \frac{1}{N} = \frac{1}{3 + \sqrt{7}} \] 3. **Rationalize the denominator**: To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \( 3 - \sqrt{7} \): \[ \frac{1}{3 + \sqrt{7}} \cdot \frac{3 - \sqrt{7}}{3 - \sqrt{7}} = \frac{3 - \sqrt{7}}{(3 + \sqrt{7})(3 - \sqrt{7})} \] 4. **Calculate the denominator using the difference of squares**: The denominator can be simplified using the difference of squares formula: \[ (3 + \sqrt{7})(3 - \sqrt{7}) = 3^2 - (\sqrt{7})^2 = 9 - 7 = 2 \] 5. **Combine the results**: Now we can write the expression for \( \frac{1}{N} \): \[ \frac{1}{N} = \frac{3 - \sqrt{7}}{2} \] ### Final Result: Thus, the value of \( \frac{1}{N} \) is: \[ \frac{3 - \sqrt{7}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If N = sqrt7 - sqrt3 , then what is the value of (1/N)?

If N=sqrt8-sqrt5 , then what is the value of (1/N)?

If N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3), then what is the value of N + (1/N)?

If N=(sqrt""9+sqrt""7)div(sqrt""9-sqrt""7) , then what is the simplified value of 1/N?