Home
Class 14
MATHS
If N=sqrt(9)+sqrt(6), then what is the ...

If `N=sqrt(9)+sqrt(6)`, then what is the value of 1/N?

A

`sqrt(9)-sqrt(6)`

B

`3(sqrt(9) -sqrt(6))`

C

`(sqrt(9) - sqrt(6))//3`

D

`(sqrt(9) - sqrt(6))//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{N} \) where \( N = \sqrt{9} + \sqrt{6} \), we can follow these steps: ### Step 1: Calculate \( N \) First, we need to calculate the value of \( N \): \[ N = \sqrt{9} + \sqrt{6} \] Calculating the square roots: \[ \sqrt{9} = 3 \quad \text{and} \quad \sqrt{6} \text{ remains as } \sqrt{6} \] Thus, \[ N = 3 + \sqrt{6} \] ### Step 2: Find \( \frac{1}{N} \) Now, we need to find \( \frac{1}{N} \): \[ \frac{1}{N} = \frac{1}{3 + \sqrt{6}} \] ### Step 3: Rationalize the Denominator To simplify \( \frac{1}{3 + \sqrt{6}} \), we will rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator, which is \( 3 - \sqrt{6} \): \[ \frac{1}{3 + \sqrt{6}} \cdot \frac{3 - \sqrt{6}}{3 - \sqrt{6}} = \frac{3 - \sqrt{6}}{(3 + \sqrt{6})(3 - \sqrt{6})} \] ### Step 4: Simplify the Denominator Now, we simplify the denominator using the difference of squares: \[ (3 + \sqrt{6})(3 - \sqrt{6}) = 3^2 - (\sqrt{6})^2 = 9 - 6 = 3 \] ### Step 5: Final Expression Now we can write: \[ \frac{1}{N} = \frac{3 - \sqrt{6}}{3} \] This can be separated into two fractions: \[ \frac{1}{N} = 1 - \frac{\sqrt{6}}{3} \] ### Conclusion Thus, the value of \( \frac{1}{N} \) is: \[ \frac{1}{N} = 1 - \frac{\sqrt{6}}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If N = sqrt7 - sqrt3 , then what is the value of (1/N)?

If N=sqrt8-sqrt5 , then what is the value of (1/N)?