Home
Class 14
MATHS
What is the value of (sqrt(5)+2)div(sqrt...

What is the value of `(sqrt(5)+2)div(sqrt(5)-2)` ?

A

a. `9+4sqrt(5)`

B

b. `9-4sqrt(5)`

C

c. `7+4sqrt(5)`

D

d. `9+2sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{5} + 2) \div (\sqrt{5} - 2)\), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \] ### Step 2: Apply the componendo and dividendo rule According to the componendo and dividendo rule, we can rewrite the expression as: \[ \frac{(\sqrt{5} + 2) + (\sqrt{5} + 2)}{(\sqrt{5} - 2) + (\sqrt{5} + 2)} \] This simplifies to: \[ \frac{2(\sqrt{5} + 2)}{2\sqrt{5}} \] ### Step 3: Simplify the expression Now we can simplify the expression: \[ \frac{2(\sqrt{5} + 2)}{2\sqrt{5}} = \frac{\sqrt{5} + 2}{\sqrt{5}} \] ### Step 4: Split the fraction We can split the fraction into two parts: \[ \frac{\sqrt{5}}{\sqrt{5}} + \frac{2}{\sqrt{5}} = 1 + \frac{2}{\sqrt{5}} \] ### Step 5: Rationalize the second term To rationalize \(\frac{2}{\sqrt{5}}\), we multiply the numerator and the denominator by \(\sqrt{5}\): \[ 1 + \frac{2\sqrt{5}}{5} \] ### Step 6: Combine the terms Now we can combine the terms: \[ 1 + \frac{2\sqrt{5}}{5} = \frac{5}{5} + \frac{2\sqrt{5}}{5} = \frac{5 + 2\sqrt{5}}{5} \] ### Final Answer Thus, the value of \((\sqrt{5} + 2) \div (\sqrt{5} - 2)\) is: \[ \frac{5 + 2\sqrt{5}}{5} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt(5)-2)(sqrt(5)-2) is:

The value of (sqrt(5) - 2)/(sqrt(5) + 2) is :

The value of (sqrt5 + 2)/(sqrt5 - 2) is :

The value of (sqrt(5)+2)^(6)+(sqrt(5)-2)^(6) is

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?