Home
Class 14
MATHS
What is the value of 9^(2) + 11 ^(2) +… ...

What is the value of `9^(2) + 11 ^(2) +… 21 ^(2)` ?

A

1441

B

1346

C

1532

D

1687

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(9^2 + 11^2 + 13^2 + 15^2 + 17^2 + 19^2 + 21^2\), we can follow these steps: ### Step 1: Identify the Sequence The numbers \(9, 11, 13, 15, 17, 19, 21\) form an arithmetic sequence where the first term \(a = 9\) and the common difference \(d = 2\). ### Step 2: Determine the Number of Terms To find the number of terms \(n\) in the sequence, we can use the formula for the \(n\)-th term of an arithmetic sequence: \[ a_n = a + (n-1)d \] Setting \(a_n = 21\): \[ 21 = 9 + (n-1) \cdot 2 \] \[ 21 - 9 = (n-1) \cdot 2 \] \[ 12 = (n-1) \cdot 2 \] \[ n - 1 = 6 \quad \Rightarrow \quad n = 7 \] So, there are 7 terms in the sequence. ### Step 3: Calculate the Sum of Squares We need to calculate the sum of squares of these terms: \[ S = 9^2 + 11^2 + 13^2 + 15^2 + 17^2 + 19^2 + 21^2 \] Calculating each square: - \(9^2 = 81\) - \(11^2 = 121\) - \(13^2 = 169\) - \(15^2 = 225\) - \(17^2 = 289\) - \(19^2 = 361\) - \(21^2 = 441\) Now, sum these values: \[ S = 81 + 121 + 169 + 225 + 289 + 361 + 441 \] ### Step 4: Perform the Addition Adding these values step by step: 1. \(81 + 121 = 202\) 2. \(202 + 169 = 371\) 3. \(371 + 225 = 596\) 4. \(596 + 289 = 885\) 5. \(885 + 361 = 1246\) 6. \(1246 + 441 = 1687\) Thus, the final sum is: \[ S = 1687 \] ### Conclusion The value of \(9^2 + 11^2 + 13^2 + 15^2 + 17^2 + 19^2 + 21^2\) is \(1687\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of 6^(2) – 5^(2) + 8^(2) – 7^(2) + 10^(2) – 9^(2) + 12^(2) – 11^(2) + 14^(2) – 13^(2) ?

What is the value of 11^(2)+12^(2)+.....+20^(2) ?

Find the value of 9 + 10 + 11 + 12 + … + 21.

What is the value of 2+5+8+11+….+101 ?

If 6 @ 4 @ 7 = 101 " and " 2 @ 5 @ 11 = 150 , then what is the value of A in A @ 8 @ 9 = 289 ?