Home
Class 12
MATHS
sin [(pi)/(3) - sin^(-1) (-(1)/(2))] is ...

`sin [(pi)/(3) - sin^(-1) (-(1)/(2))]` is equal to :

A

`(1)/(2)`

B

`(1)/(3)`

C

`-1`

D

1

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2022

    CBSE MODEL PAPER|Exercise SECTION – B |20 Videos
  • SAMPLE PAPER 2022

    CBSE MODEL PAPER|Exercise SECTION – C |10 Videos
  • SAMPLE QUESTION PAPER ( MATHEMATICS )

    CBSE MODEL PAPER|Exercise QUESTION|60 Videos
  • SAMPLE PAPER 2022 TERM II

    CBSE MODEL PAPER|Exercise SECTION C|5 Videos

Similar Questions

Explore conceptually related problems

sin[(pi)/(2)-sin^(-1)(-(1)/(2))]

sin[pi/2-sin^(-1)(-(1)/(2))] is equal to:

sin[(pi)/(2)-sin^(-1)-1/2]

Evaluate :sin[(pi)/(3)-sin^(-1)(-(1)/(2))]

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

Number of solutions of the equation,sin^(-1)(1-x)-4sin^(-1)(x)=(pi)/(2), is equal to

Evaluate (i) sin [(pi/3 - sin^(-1)(-1/2)]

sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?

What is sin^(-1)sin((3pi)/(5)) equal to?