Home
Class 12
MATHS
Simplest form of tan^(-1)((sqrt(1+cos x)...

Simplest form of `tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2)` is:

A

`(pi)/(4)+(x)/(2)`

B

`(3 pi)/(2)-(x)/(2)`

C

`-(x)/(2)`

D

`pi -(x)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \tan^{-1}\left(\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}}\right) \) for \( \pi < x < \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \tan^{-1}\left(\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}}\right) \] ### Step 2: Use trigonometric identities We can use the identities: \[ \sqrt{1 + \cos x} = \sqrt{2} \cos\left(\frac{x}{2}\right) \] \[ \sqrt{1 - \cos x} = \sqrt{2} \sin\left(\frac{x}{2}\right) \] Substituting these into the expression gives: \[ y = \tan^{-1}\left(\frac{\sqrt{2} \cos\left(\frac{x}{2}\right) + \sqrt{2} \sin\left(\frac{x}{2}\right)}{\sqrt{2} \cos\left(\frac{x}{2}\right) - \sqrt{2} \sin\left(\frac{x}{2}\right)}\right) \] ### Step 3: Simplify the fraction Factoring out \(\sqrt{2}\) from the numerator and denominator: \[ y = \tan^{-1}\left(\frac{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}\right) \] ### Step 4: Use the tangent addition formula The expression can be interpreted using the tangent addition formula: \[ \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right) \tan\left(\frac{x}{2}\right)} \] Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we have: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right) \] ### Step 5: Simplify the final expression Thus, we can conclude: \[ y = \frac{\pi}{4} + \frac{x}{2} \] ### Step 6: Consider the range of x Given that \( \pi < x < \frac{3\pi}{2} \), we can find the range of \( y \): - When \( x = \pi \), \( y = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4} \) - When \( x = \frac{3\pi}{2} \), \( y = \frac{\pi}{4} + \frac{3\pi}{4} = \pi \) Thus, the simplest form of the expression is: \[ \frac{\pi}{4} + \frac{x}{2}, \quad \text{for } \pi < x < \frac{3\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2022

    CBSE MODEL PAPER|Exercise SECTION – C |10 Videos
  • SAMPLE PAPER 2022

    CBSE MODEL PAPER|Exercise SECTION – C |10 Videos
  • SAMPLE QUESTION PAPER ( MATHEMATICS )

    CBSE MODEL PAPER|Exercise QUESTION|60 Videos
  • SAMPLE PAPER 2022 TERM II

    CBSE MODEL PAPER|Exercise SECTION C|5 Videos

Similar Questions

Explore conceptually related problems

Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))), pi lt x lt (3pi)/2 is :

tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

If pi

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

CBSE MODEL PAPER-SAMPLE PAPER 2022-SECTION – B
  1. the function f:R rarr R defined as f(x)=x^(3) is

    Text Solution

    |

  2. If x=a sec theta , y=b tan theta find (d^2 y )/( dx^2) at x =...

    Text Solution

    |

  3. In the given graph, the feasible region for a LPP is shaded. The ob...

    Text Solution

    |

  4. The derivative of sin^(-1) (2x sqrt(1-x^(2)))" w.r.t. "sin^(-1)x, (1)/...

    Text Solution

    |

  5. If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)], ...

    Text Solution

    |

  6. The real function f(x) =2x^(3)-3x^(2)-36x +7 is:

    Text Solution

    |

  7. Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)...

    Text Solution

    |

  8. Given that A is a non-singular matrix of order 3 such that A^(2) = 2A,...

    Text Solution

    |

  9. The function f(x) = x + cos x + b is strictly decreasing over R then:

    Text Solution

    |

  10. Let R be a relation on the set N given by R={(a ,\ b): a=b-2,\ b >6}do...

    Text Solution

    |

  11. The point(s), at which the function f given by f(x) ={((x)/(|x|)",", x...

    Text Solution

    |

  12. If A=[(0,2),(3,-4)] and kA =[(0,3 a),(2b,24)], then the values of k, a...

    Text Solution

    |

  13. A linear programming problem is as follows: Minimize Z= 30x + 50y sub...

    Text Solution

    |

  14. The area of a trapezium is defined by function ? and given by f(x) =(1...

    Text Solution

    |

  15. If A is square matrix such that A^(2)=A, then show that (I+A)^(3)=7A+I...

    Text Solution

    |

  16. If tan^(-1) x=y, then:

    Text Solution

    |

  17. Let A = {1, 2, 3}, B = {4, 5, 6, 7}and let f = {(1, 4), (2, 5), (3, 6)...

    Text Solution

    |

  18. For A[(3,1),(-1,2)], then 14 A^(-1) is given by:

    Text Solution

    |

  19. Find the point on the curve y=x^3-11 x+5 at which the tangent is y=x...

    Text Solution

    |

  20. Given that A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I, then :

    Text Solution

    |