Home
Class 10
MATHS
If 2 sin^(2)beta -cos^(2)beta =2, then b...

If `2 sin^(2)beta -cos^(2)beta =2`, then `beta ` is

A

`0^(@)`

B

`90^(@)`

C

`45^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2sin^(2)beta-cos^(2)beta = 2 ,then beta is (a ) 0° (b) 90° (c) 45°

If 2sin^(2)beta-cos^(2)beta = 2 ,then beta is (a ) 0° (b) 90° (c) 45°

Deduce:- sin^2 beta + cos^2 beta = 1 .

Let f(x) = 2sin^(2)beta + 4cos(x + beta)* sin x* sin beta + cos 2(x + beta) . Then the value of |f(alpha)| ^(2)+ {f(pi/4 -alpha)}^(2) =_______.

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

Simplify 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)

cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

Prove that: cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

underset is f(alpha. beta)=cos^(2)+beta cos^(2)(alpha+beta)-2cos alpha cos beta cos(alpha+beta)