Home
Class 14
MATHS
If 3+cos^(2)theta=3(cot^2theta+sin^2thet...

If `3+cos^(2)theta=3(cot^2theta+sin^2theta).0^(@)ltthetalt90^(@)`, then what is the value of `(costheta+2sintheta)`?

A

`3sqrt2`

B

`(sqrt3+2)/2`

C

`(2sqrt3+1)/2`

D

`(3sqrt3+1)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 + \cos^2 \theta = 3(\cot^2 \theta + \sin^2 \theta)\) for \(0^\circ < \theta < 90^\circ\) and find the value of \(\cos \theta + 2 \sin \theta\), we can follow these steps: ### Step 1: Rewrite the equation We start with the original equation: \[ 3 + \cos^2 \theta = 3(\cot^2 \theta + \sin^2 \theta) \] Recall that \(\cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta}\). Substituting this into the equation gives: \[ 3 + \cos^2 \theta = 3\left(\frac{\cos^2 \theta}{\sin^2 \theta} + \sin^2 \theta\right) \] ### Step 2: Simplify the right-hand side The right-hand side can be simplified: \[ 3 + \cos^2 \theta = 3\left(\frac{\cos^2 \theta + \sin^4 \theta}{\sin^2 \theta}\right) \] This can be rewritten as: \[ 3 + \cos^2 \theta = \frac{3\cos^2 \theta + 3\sin^4 \theta}{\sin^2 \theta} \] ### Step 3: Multiply through by \(\sin^2 \theta\) To eliminate the fraction, multiply both sides by \(\sin^2 \theta\): \[ (3 + \cos^2 \theta)\sin^2 \theta = 3\cos^2 \theta + 3\sin^4 \theta \] Expanding the left-hand side gives: \[ 3\sin^2 \theta + \cos^2 \theta \sin^2 \theta = 3\cos^2 \theta + 3\sin^4 \theta \] ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ 3\sin^2 \theta - 3\sin^4 \theta + \cos^2 \theta \sin^2 \theta - 3\cos^2 \theta = 0 \] Factoring out common terms: \[ 3\sin^2 \theta(1 - \sin^2 \theta) + \cos^2 \theta(\sin^2 \theta - 3) = 0 \] Using the identity \(1 - \sin^2 \theta = \cos^2 \theta\): \[ 3\sin^2 \theta \cos^2 \theta + \cos^2 \theta(\sin^2 \theta - 3) = 0 \] ### Step 5: Factor out \(\cos^2 \theta\) Factoring out \(\cos^2 \theta\): \[ \cos^2 \theta(3\sin^2 \theta + \sin^2 \theta - 3) = 0 \] This gives us two cases: 1. \(\cos^2 \theta = 0\) (not possible since \(\theta\) is between \(0^\circ\) and \(90^\circ\)) 2. \(4\sin^2 \theta - 3 = 0\) ### Step 6: Solve for \(\sin^2 \theta\) Solving \(4\sin^2 \theta - 3 = 0\) gives: \[ \sin^2 \theta = \frac{3}{4} \] Thus, \(\sin \theta = \frac{\sqrt{3}}{2}\). ### Step 7: Find \(\cos \theta\) Using the Pythagorean identity: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{3}{4} = \frac{1}{4} \] Thus, \(\cos \theta = \frac{1}{2}\). ### Step 8: Calculate \(\cos \theta + 2 \sin \theta\) Now we calculate: \[ \cos \theta + 2 \sin \theta = \frac{1}{2} + 2 \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} + \sqrt{3} \] ### Final Answer The value of \(\cos \theta + 2 \sin \theta\) is: \[ \frac{1}{2} + \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@) , then find the value of theta .

If 3(cot^(2)theta-cos^(2)theta)=1-sin^(2)theta,0^(@)ltthetalt90^(@), then the theta equal to

If 5costheta+12sintheta=13,0^(@)ltthetalt90^(@) , then the value of sin theta is

If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt theta lt 90^(@) , then the value of theta is

If (cosectheta+sintheta)/(cosectheta-sintheta)=(5)/(3) and 0^(@)ltthetalt90^(@) then what is the value of tan theta ?

If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :

costheta-cos2theta=sin3theta

If 2cos^(2)theta-5costheta+2=0,0^(@)ltthetalt90^(@) then the value of (1)/((cosectheta+cottheta)) is :