Home
Class 14
MATHS
What is the Value of (0.74xx1.23xx0.13)/...

What is the Value of `(0.74xx1.23xx0.13)/((0.37)^3+(0.41)^3-8(0.39)^3)`?

A

`(-1)/3`

B

1

C

`-1`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.74 \times 1.23 \times 0.13) / ((0.37)^3 + (0.41)^3 - 8(0.39)^3)\), we can follow these steps: ### Step 1: Rewrite the Numerator We start with the numerator \(0.74 \times 1.23 \times 0.13\). We can express \(0.74\) and \(1.23\) in terms of \(0.37\) and \(0.41\): \[ 0.74 = 2 \times 0.37 \quad \text{and} \quad 1.23 = 3 \times 0.41 \] Thus, we can rewrite the numerator as: \[ (2 \times 0.37) \times (3 \times 0.41) \times 0.13 = 6 \times 0.37 \times 0.41 \times 0.13 \] ### Step 2: Rewrite the Denominator Next, we simplify the denominator: \[ (0.37)^3 + (0.41)^3 - 8(0.39)^3 \] Using the identity \(a^3 + b^3 - 3ab(a + b)\) for \(a = 0.37\), \(b = 0.41\), and \(c = 0.39\): \[ 0.37^3 + 0.41^3 = (0.37 + 0.41)(0.37^2 - 0.37 \cdot 0.41 + 0.41^2) \] Calculating \(0.37 + 0.41 = 0.78\). Now, we need to calculate \(0.37^2 - 0.37 \cdot 0.41 + 0.41^2\): \[ 0.37^2 = 0.1369, \quad 0.41^2 = 0.1681, \quad 0.37 \cdot 0.41 = 0.1517 \] Thus, \[ 0.37^2 - 0.37 \cdot 0.41 + 0.41^2 = 0.1369 - 0.1517 + 0.1681 = 0.1533 \] So, \[ 0.37^3 + 0.41^3 = 0.78 \times 0.1533 \] ### Step 3: Calculate \(8(0.39)^3\) Now, we calculate \(8(0.39)^3\): \[ (0.39)^3 = 0.059319 \quad \Rightarrow \quad 8(0.39)^3 = 8 \times 0.059319 = 0.474552 \] ### Step 4: Combine the Denominator Now, we can combine the denominator: \[ 0.37^3 + 0.41^3 - 8(0.39)^3 = (0.78 \times 0.1533) - 0.474552 \] Calculating \(0.78 \times 0.1533 = 0.119574\): \[ 0.119574 - 0.474552 = -0.354978 \] ### Step 5: Final Calculation Now we can substitute back into our original expression: \[ \frac{6 \times 0.37 \times 0.41 \times 0.13}{-0.354978} \] ### Step 6: Simplify Calculating \(6 \times 0.37 \times 0.41 \times 0.13\): \[ 6 \times 0.37 \times 0.41 \times 0.13 = 0.0366 \] Thus, the final value is: \[ \frac{0.0366}{-0.354978} \approx -0.103 \] ### Conclusion The value of the expression is approximately \(-0.103\).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((0.3)^(3)-(0.1)^(3))/([(0.3)^(2)+(0.1)^(2)+(0.3)xx (0.1)]) ?

What is the value of (5.6xx0.36+0.42xx3.2)/(0.8xx2.1) ?

0.23xx0.3 = ?

What is the value of ((2.3)^3-0.027)/((2.3)^2+0.09+0.69)

What is the value of (3.6xx1.62+0.48 xx3.6)/(1.8xx0.8+10.8xx0.3- 2.16) ? (3.6xx1.62+0.48 xx3.6)/(1.8xx0.8+10.8xx0.3- 2.16) का मान क्या है?