Home
Class 14
MATHS
If tan(11theta)=cot(7theta), then what i...

If `tan(11theta)=cot(7theta)`, then what is the value of `sin^2(6theta)+sec^2(9theta)+cosec^2(12theta)`?

A

`35/12`

B

`23/6`

C

`31/12`

D

`43/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(11\theta) = \cot(7\theta) \), we can start by using the identity that relates tangent and cotangent. ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \cot(x) = \frac{1}{\tan(x)} \] Thus, we can rewrite the equation as: \[ \tan(11\theta) = \frac{1}{\tan(7\theta)} \] This implies: \[ \tan(11\theta) \tan(7\theta) = 1 \] ### Step 2: Use the identity for tangent From the identity \( \tan(A) \tan(B) = 1 \), we can conclude: \[ 11\theta + 7\theta = 90^\circ \quad \text{(since } \tan(A) \tan(B) = 1 \text{ when } A + B = 90^\circ\text{)} \] This simplifies to: \[ 18\theta = 90^\circ \] ### Step 3: Solve for \( \theta \) Dividing both sides by 18: \[ \theta = \frac{90^\circ}{18} = 5^\circ \] ### Step 4: Calculate \( \sin^2(6\theta) + \sec^2(9\theta) + \csc^2(12\theta) \) Now we will substitute \( \theta = 5^\circ \) into the expression \( \sin^2(6\theta) + \sec^2(9\theta) + \csc^2(12\theta) \). 1. **Calculate \( 6\theta \)**: \[ 6\theta = 6 \times 5^\circ = 30^\circ \] Thus: \[ \sin^2(6\theta) = \sin^2(30^\circ) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] 2. **Calculate \( 9\theta \)**: \[ 9\theta = 9 \times 5^\circ = 45^\circ \] Thus: \[ \sec^2(9\theta) = \sec^2(45^\circ) = \left(\frac{1}{\cos(45^\circ)}\right)^2 = \left(\frac{1}{\frac{1}{\sqrt{2}}}\right)^2 = 2 \] 3. **Calculate \( 12\theta \)**: \[ 12\theta = 12 \times 5^\circ = 60^\circ \] Thus: \[ \csc^2(12\theta) = \csc^2(60^\circ) = \left(\frac{1}{\sin(60^\circ)}\right)^2 = \left(\frac{1}{\frac{\sqrt{3}}{2}}\right)^2 = \frac{4}{3} \] ### Step 5: Combine the results Now we can sum these values: \[ \sin^2(6\theta) + \sec^2(9\theta) + \csc^2(12\theta) = \frac{1}{4} + 2 + \frac{4}{3} \] ### Step 6: Find a common denominator The common denominator for \( 4, 1, \) and \( 3 \) is \( 12 \): \[ \frac{1}{4} = \frac{3}{12}, \quad 2 = \frac{24}{12}, \quad \frac{4}{3} = \frac{16}{12} \] Now, adding these fractions: \[ \frac{3}{12} + \frac{24}{12} + \frac{16}{12} = \frac{43}{12} \] ### Final Answer Thus, the value of \( \sin^2(6\theta) + \sec^2(9\theta) + \csc^2(12\theta) \) is: \[ \boxed{\frac{43}{12}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(2) theta + cot^(2) theta = 2 , then what is the value of 2^(sec theta cosec theta ) ?

If tan theta =(1)/(sqrt(5)), " write the value of " (("cosec"^(2)theta-sec^(2)theta))/(("cosec"^(2)theta+sec^(2)theta)).

What is the value of [tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2)(90-theta)cot^(2)(90-theta) ?

If cot theta= sqrt7 , then the value of (cosec^2 theta-sec^2 theta)/(cosec^2 theta+sec^2 theta) is: यदि cot theta= sqrt7 , है, तो (cosec^2 theta-sec^2 theta)/(cosec^2 theta+sec^2 theta) का मान क्या होगा ?

If Cot theta=sqrt6 , then the value of (cosec^2 theta+sec^2 theta)/(cosec^2 theta-sec^2 theta) is: यदि Cot theta=sqrt6 ,है, तो (cosec^2 theta+sec^2 theta)/(cosec^2 theta-sec^2 theta) का मान ज्ञात करें |

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

What is the value of (tan theta cosec theta)^(2)- (sin theta sec theta)^(2) .

tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta