Home
Class 14
MATHS
The value of (sqrt(0.6912)+sqrt(0.5292))...

The value of `(sqrt(0.6912)+sqrt(0.5292))/(sqrt(0.6912)-sqrt(0.5292))` is:

A

1.5

B

0.9

C

15

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{0.6912} + \sqrt{0.5292}) / (\sqrt{0.6912} - \sqrt{0.5292})\), we will follow these steps: ### Step 1: Simplify the Expression First, we can rewrite the expression as: \[ \frac{\sqrt{0.6912} + \sqrt{0.5292}}{\sqrt{0.6912} - \sqrt{0.5292}} \] ### Step 2: Eliminate the Decimals To eliminate the decimals, we can multiply both the numerator and the denominator by \(10000\): \[ \frac{10000(\sqrt{0.6912} + \sqrt{0.5292})}{10000(\sqrt{0.6912} - \sqrt{0.5292})} \] This simplifies to: \[ \frac{\sqrt{6912} + \sqrt{5292}}{\sqrt{6912} - \sqrt{5292}} \] ### Step 3: Calculate the Square Roots Next, we calculate the square roots: - \(\sqrt{6912} = \sqrt{576 \times 12} = \sqrt{576} \times \sqrt{12} = 24\sqrt{12}\) - \(\sqrt{5292} = \sqrt{441 \times 12} = \sqrt{441} \times \sqrt{12} = 21\sqrt{12}\) Now, substituting these values back into the expression gives us: \[ \frac{24\sqrt{12} + 21\sqrt{12}}{24\sqrt{12} - 21\sqrt{12}} \] ### Step 4: Factor Out \(\sqrt{12}\) Factoring out \(\sqrt{12}\) from both the numerator and denominator: \[ \frac{\sqrt{12}(24 + 21)}{\sqrt{12}(24 - 21)} \] The \(\sqrt{12}\) cancels out: \[ \frac{24 + 21}{24 - 21} = \frac{45}{3} \] ### Step 5: Final Calculation Now, we can simplify: \[ \frac{45}{3} = 15 \] Thus, the value of the expression is: \[ \boxed{15} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt0.4 is

The value of sqrt(0.25) is.

The value of (5)/(sqrt(0.0025)) is

Find the square roots of 2304 and 1764 and hence find the value of (sqrt(0.2304)+sqrt(0.1764))/(sqrt(0.2304)-sqrt(0.1764))

If sqrt(18225)=135, then the value of (sqrt(182.25)+sqrt(1.8225)+sqrt(0.018225)+sqrt(0.0001825)) is (a) 1.49985 (b) 14.9985 (c) 149.985 (d) 1499.85