Home
Class 14
MATHS
If a+b+c=6 and a^2+b^2+c^2=38, then wha...

If `a+b+c=6` and `a^2+b^2+c^2=38`, then whatis the value of `a(b^2+c^(2))+b(c^2+a^2)+c(a^2+b^2)+3abc?`

A

3

B

`-3`

C

6

D

`-6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations**: - \( a + b + c = 6 \) (Equation 1) - \( a^2 + b^2 + c^2 = 38 \) (Equation 2) 2. **Using the Identity**: We can use the identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) \] Substituting the values from Equation 1 into the identity: \[ 38 = 6^2 - 2(ab + bc + ca) \] Simplifying this gives: \[ 38 = 36 - 2(ab + bc + ca) \] Rearranging gives: \[ 2(ab + bc + ca) = 36 - 38 = -2 \] Therefore: \[ ab + bc + ca = -1 \quad (Equation 3) \] 3. **Finding the Expression**: We need to find the value of: \[ a(b^2 + c^2) + b(c^2 + a^2) + c(a^2 + b^2) + 3abc \] We can rewrite \( b^2 + c^2 \) using the identity: \[ b^2 + c^2 = (b + c)^2 - 2bc \] Since \( b + c = 6 - a \), we have: \[ b^2 + c^2 = (6 - a)^2 - 2bc \] Similarly, we can express \( c^2 + a^2 \) and \( a^2 + b^2 \) in terms of \( a, b, c \). 4. **Substituting Values**: We can substitute \( b + c \) and \( a + c \) and \( a + b \) into the expression: \[ a((6 - a)^2 - 2bc) + b((6 - b)^2 - 2ac) + c((6 - c)^2 - 2ab) + 3abc \] This expression can be simplified further, but we can also directly calculate the value using the known values of \( ab + bc + ca \) and \( a + b + c \). 5. **Final Calculation**: We can now substitute \( ab + bc + ca = -1 \) into the expression: \[ a(b^2 + c^2) + b(c^2 + a^2) + c(a^2 + b^2) + 3abc = (a + b + c)(a^2 + b^2 + c^2) - 3abc \] Substituting the known values: \[ = 6 \cdot 38 - 3abc \] Now we need to find \( abc \). Since we have \( ab + bc + ca = -1 \), we can assume \( c = 0 \) for simplicity, leading to \( a + b = 6 \) and \( a^2 + b^2 = 38 \). Solving these gives \( ab = -1 \). 6. **Final Value**: Thus, substituting back gives: \[ = 228 - 3(-1) = 228 + 3 = 231 \] Thus, the final answer is: \[ \boxed{231} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=7, and a^(2)+b^(2)+c^(2)=33 , then what is the value of a^(3)+b^(3)+c^(3)-3abc ?

If a+b+c=7 , and a^(2)+b^(2)+c^(2)=33 , then what is the value of a^(3)+b^(3)+c^(3)-3abc ?

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of (a^3+b^3+c^3-3abc) .

If a+b+c=9 and a^(2)+b^(2)+c^(2)=35, find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=10 and a^(2)+b^(2)+c^(2)=80 , find the value of a^(3)+b^(3)+c^(3)-3abc .

If a+b+c=15 and a^(2)+b^(2)+c^(2)=83 find the value of a^(3)+b^(3)+c^(3)-3abc

If a+b+c=15 and a^(2)+b^(2)+c^(2)=83 find the value of a^(3)+b^(3)+c^(3)-3abc