Home
Class 14
MATHS
If (2x-5y)^3-(2x+5y)^3=y[Ax^2+By^2], the...

If `(2x-5y)^3-(2x+5y)^3=y[Ax^2+By^2]`, then what is the value of `(2A-B)`?

A

(A).25

B

(B).40

C

(C).15

D

(D).10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((2x - 5y)^3 - (2x + 5y)^3 = y[Ax^2 + By^2]\), we can use the formula for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + b^2 + ab) \] Here, let \(a = 2x - 5y\) and \(b = 2x + 5y\). ### Step 1: Calculate \(a - b\) \[ a - b = (2x - 5y) - (2x + 5y) = -10y \] ### Step 2: Calculate \(a^2 + b^2 + ab\) First, we need to find \(a^2\), \(b^2\), and \(ab\): - \(a^2 = (2x - 5y)^2 = 4x^2 - 20xy + 25y^2\) - \(b^2 = (2x + 5y)^2 = 4x^2 + 20xy + 25y^2\) - \(ab = (2x - 5y)(2x + 5y) = 4x^2 - 25y^2\) Now, we can combine these: \[ a^2 + b^2 + ab = (4x^2 - 20xy + 25y^2) + (4x^2 + 20xy + 25y^2) + (4x^2 - 25y^2) \] Combining like terms: \[ = 4x^2 + 4x^2 + 4x^2 + (-20xy + 20xy) + (25y^2 + 25y^2 - 25y^2) \] \[ = 12x^2 + 0xy + 25y^2 = 12x^2 + 25y^2 \] ### Step 3: Substitute back into the equation Now substituting back into the difference of cubes formula: \[ (2x - 5y)^3 - (2x + 5y)^3 = (-10y)(12x^2 + 25y^2) \] This gives us: \[ -10y(12x^2 + 25y^2) = y[Ax^2 + By^2] \] ### Step 4: Equate coefficients From the equation, we can equate coefficients: \[ -10y(12x^2 + 25y^2) = y[Ax^2 + By^2] \] This implies: \[ Ax^2 + By^2 = -120x^2 - 250y^2 \] Thus, we have: \[ A = -120, \quad B = -250 \] ### Step 5: Calculate \(2A - B\) Now we need to find \(2A - B\): \[ 2A - B = 2(-120) - (-250) = -240 + 250 = 10 \] ### Final Answer The value of \(2A - B\) is: \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 27(x+y)^3-8(x-y)^3=( x+ 5y)(Ax^2+By^2 +Cxy) , then what is the value of (A+ B -C) ? यदि 27(x+y)^3-8(x-y)^3=( x+ 5y)(Ax^2+By^2 +Cxy) , तो (A+ B -C) का मान क्या होगा ?

If 9+2(3x-xy+x^(2))+y^(2)=0 ,then what is the value of (3x^(2)-2xy+5y^(2)) ?

If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy , then the value of (A + B + C ) is: यदि [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy है, तो (A + B + C) का मान ज्ञात करें|

If 2x + 3y = 5 and 3x + 2y = 10 , then what is the value of x-y?

Simplify :(2x-5y)^(3)-(2x+5y)^(3)

If x * y = x^2+y^2 then the value of (4 * 5) * 3 is

If (2x+3y):(3x+5y)=18:29, what is he value of x:y?

If 24 sqrt3 x^3+5 sqrt5 y^3=(2 sqrt3x+ sqrt5 y)(Ax^2+Cy^2+Bxy) , then the value of (A^2-B^2+C^2) is: यदि 24 sqrt3 x^3+5 sqrt5 y^3=(2 sqrt3x+ sqrt5 y)(Ax^2+Cy^2+Bxy) है, तो (A^2-B^2+C^2) का मान ज्ञात करें |

Simplify: (2x-5y)^(3)-(2x+5y)^(3)