Home
Class 14
MATHS
If sqrt(x)+(1)/(sqrt(x))=3,xgt0, then x^...

If `sqrt(x)+(1)/(sqrt(x))=3,xgt0`, then `x^(2)(x^(2)-47)=?`

A

0

B

2

C

`-2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, let's go through the steps systematically. Given: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = 3 \quad (x > 0) \] ### Step 1: Square both sides We start by squaring both sides of the equation to eliminate the square root: \[ \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = 3^2 \] This expands to: \[ x + 2 + \frac{1}{x} = 9 \] ### Step 2: Rearranging the equation Now, we can rearrange the equation: \[ x + \frac{1}{x} + 2 = 9 \] Subtracting 2 from both sides gives: \[ x + \frac{1}{x} = 7 \] ### Step 3: Square again Next, we square both sides again: \[ \left(x + \frac{1}{x}\right)^2 = 7^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 49 \] ### Step 4: Rearranging again Rearranging gives: \[ x^2 + \frac{1}{x^2} + 2 = 49 \] Subtracting 2 from both sides results in: \[ x^2 + \frac{1}{x^2} = 47 \] ### Step 5: Finding \(x^2(x^2 - 47)\) Now, we need to find \(x^2(x^2 - 47)\): Let \(y = x^2\). Then we can write: \[ y(y - 47) = y^2 - 47y \] ### Step 6: Substitute \(y\) Since we know \(x^2 + \frac{1}{x^2} = 47\), we can substitute \(y\) into the equation: \[ y^2 - 47y = 0 \] Factoring out \(y\): \[ y(y - 47) = 0 \] This gives us \(y = 0\) or \(y = 47\). Since \(x > 0\), we take \(y = 47\). ### Conclusion Thus, the value of \(x^2(x^2 - 47)\) is: \[ 47(47 - 47) = 47 \cdot 0 = 0 \] ### Final Answer \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(x+sqrt(2))(x-sqrt(3))=0

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

6sqrt(3)x^(2)-47x+5sqrt(3)

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^((1)/(x)))/(e^((2)/(x))+be^((1)/(x))),xlt0):} continuous at x = 0 for some constants a, b and c, then the value of (50b)/(a) is equal to

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x^(2))-sqrt(1-x^(2))) equals

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

If (sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))=3 then x=1)sqrt((2)/(3)2)sqrt((1)/(3))3)sqrt((2)/(5))sqrt((3)/(5))