Home
Class 14
MATHS
The value of (4.669)^(2)+(2.331)^(2)+14(...


The value of `(4.669)^(2)+(2.331)^(2)+14(0.667)(2.331)` is (1-k) where k = ?

A

-48

B

0.647

C

49

D

0.768

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (4.669)^2 + (2.331)^2 + 14(0.667)(2.331) = 1 - k \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the terms**: We have three terms on the left side of the equation: - \( (4.669)^2 \) - \( (2.331)^2 \) - \( 14(0.667)(2.331) \) 2. **Rewrite the third term**: Notice that \( 14(0.667)(2.331) \) can be rewritten. Since \( 0.667 \) is approximately \( \frac{2.331}{7} \), we can express it as: \[ 14(0.667)(2.331) = 14 \cdot \frac{2.331}{7} \cdot 2.331 = 4(2.331)^2 \] 3. **Combine the terms**: Now we can rewrite the entire expression: \[ (4.669)^2 + (2.331)^2 + 4(2.331)^2 = (4.669)^2 + 5(2.331)^2 \] 4. **Use the identity**: Recognize that \( (4.669)^2 + (2.331)^2 + 2 \cdot 4.669 \cdot 2.331 \) resembles the square of a binomial: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Here, if we let \( a = 4.669 \) and \( b = 2.331 \), we can express the left side as: \[ (4.669 + 2.331)^2 = (7)^2 \] 5. **Substitute back into the equation**: Now substitute back into the equation: \[ 7^2 = 1 - k \] This simplifies to: \[ 49 = 1 - k \] 6. **Solve for \( k \)**: Rearranging gives: \[ k = 1 - 49 = -48 \] ### Final Answer: Thus, the value of \( k \) is \( -48 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

4.669 / 2.3 = ?

3√(1.331)^4/(1.331)^3 + 3√(1.331)/(13.31) = ?

For what value of k(k^(2)-1)x^(2)+(k^(2)-4k+3)x+(k^(2)-3k+2)=0 is an identity in x?

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

For what value of k,(4-k)x^(2)+(2k+4)x+(8k+1)=0 is a perfect square.

For what value of k,(4-k)x^(2)+2(k+2)x+(8K+1) is a perfect square.

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Find value of k if (k^(2)-1)x^(2)+4x+1=0 has one root =-1

The value of int_(0)^((pi)/(2))log(sin^(2)theta+k^(2)cos^(2)theta)d theta where k>=0, is: