Home
Class 14
MATHS
The value of 3(1)/(3) div 2(1)/(2) of 1(...

The value of `3(1)/(3) div 2(1)/(2)` of `1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4))` is

A

`(35)/(24)`

B

`(55)/(24)`

C

`(5)/(24)`

D

`(25)/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{3 \frac{1}{3}}{2 \frac{1}{2}} \text{ of } \left( \frac{1}{3} + \left( \frac{3}{8} + \frac{1}{7} \times 1 \frac{3}{4} \right) \right) \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert the mixed numbers into improper fractions. - \( 3 \frac{1}{3} = \frac{10}{3} \) (because \( 3 \times 3 + 1 = 10 \)) - \( 2 \frac{1}{2} = \frac{5}{2} \) (because \( 2 \times 2 + 1 = 5 \)) - \( 1 \frac{3}{4} = \frac{7}{4} \) (because \( 1 \times 4 + 3 = 7 \)) Now our expression looks like this: \[ \frac{\frac{10}{3}}{\frac{5}{2}} \text{ of } \left( \frac{1}{3} + \left( \frac{3}{8} + \frac{1}{7} \times \frac{7}{4} \right) \right) \] ### Step 2: Calculate the Division Next, we calculate the division of the improper fractions: \[ \frac{10}{3} \div \frac{5}{2} = \frac{10}{3} \times \frac{2}{5} = \frac{20}{15} = \frac{4}{3} \] ### Step 3: Solve the Bracket Now we need to solve the expression inside the brackets: \[ \frac{1}{3} + \left( \frac{3}{8} + \frac{1}{7} \times \frac{7}{4} \right) \] First, calculate \( \frac{1}{7} \times \frac{7}{4} \): \[ \frac{1}{7} \times \frac{7}{4} = \frac{1}{4} \] Now substitute this back into the bracket: \[ \frac{1}{3} + \left( \frac{3}{8} + \frac{1}{4} \right) \] ### Step 4: Find a Common Denominator To add \( \frac{3}{8} \) and \( \frac{1}{4} \), we need a common denominator. The least common multiple of 8 and 4 is 8. \[ \frac{1}{4} = \frac{2}{8} \] Now we can add: \[ \frac{3}{8} + \frac{2}{8} = \frac{5}{8} \] ### Step 5: Add to \( \frac{1}{3} \) Now we add \( \frac{1}{3} \) to \( \frac{5}{8} \). The least common multiple of 3 and 8 is 24. \[ \frac{1}{3} = \frac{8}{24}, \quad \frac{5}{8} = \frac{15}{24} \] Now add: \[ \frac{8}{24} + \frac{15}{24} = \frac{23}{24} \] ### Step 6: Multiply by \( \frac{4}{3} \) Now we multiply the result from the division by the result from the bracket: \[ \frac{4}{3} \text{ of } \frac{23}{24} = \frac{4}{3} \times \frac{23}{24} = \frac{92}{72} \] ### Step 7: Simplify the Fraction Now simplify \( \frac{92}{72} \): \[ \frac{92 \div 4}{72 \div 4} = \frac{23}{18} \] ### Final Answer The value of the expression is \( \frac{23}{18} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

What is the value of (3)/(4) of ((1)/(3) div (1)/(2)) + (2-(2)/(5)) xx (3)/(2) + (2)/(3) ?

[ 1 (1)/(4) div 1 (1)/(2) ] + [ 2 (1)/(3) xx 1 (3)/(4) ]=

The value of 1/2div1/4 xx 1/3 is

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :