Home
Class 14
MATHS
If a nine-digit number 785x3678y is divi...

If a nine-digit number 785x3678y is divisible by 72, then the value of (x + y) is:

A

5

B

12

C

10

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( x \) and \( y \) in the nine-digit number \( 785x3678y \) such that it is divisible by 72. A number is divisible by 72 if it is divisible by both 8 and 9. ### Step 1: Check divisibility by 8 For a number to be divisible by 8, the last three digits of the number must be divisible by 8. The last three digits in our case are \( 78y \). To find \( y \), we can check the values of \( y \) from 0 to 9 and see which makes \( 78y \) divisible by 8. - \( 780 \div 8 = 97.5 \) (not divisible) - \( 781 \div 8 = 97.625 \) (not divisible) - \( 782 \div 8 = 97.75 \) (not divisible) - \( 783 \div 8 = 97.875 \) (not divisible) - \( 784 \div 8 = 98 \) (divisible) - \( 785 \div 8 = 98.125 \) (not divisible) - \( 786 \div 8 = 98.25 \) (not divisible) - \( 787 \div 8 = 98.375 \) (not divisible) - \( 788 \div 8 = 98.5 \) (not divisible) - \( 789 \div 8 = 98.625 \) (not divisible) Thus, the only value of \( y \) that makes \( 78y \) divisible by 8 is \( y = 4 \). ### Step 2: Check divisibility by 9 Now we need to ensure that the entire number \( 785x36784 \) is divisible by 9. For a number to be divisible by 9, the sum of its digits must be divisible by 9. Calculating the sum of the digits: \[ 7 + 8 + 5 + x + 3 + 6 + 7 + 8 + 4 = 48 + x \] We need \( 48 + x \) to be divisible by 9. Calculating \( 48 \mod 9 \): \[ 48 \div 9 = 5 \quad \text{(remainder 3)} \] So, \( 48 \equiv 3 \mod 9 \). To make \( 48 + x \equiv 0 \mod 9 \), we need: \[ 3 + x \equiv 0 \mod 9 \implies x \equiv 6 \mod 9 \] The possible values for \( x \) that satisfy this condition and are single digits are \( x = 6 \). ### Step 3: Calculate \( x + y \) Now that we have \( x = 6 \) and \( y = 4 \): \[ x + y = 6 + 4 = 10 \] ### Final Answer Thus, the value of \( x + y \) is \( \boxed{10} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a nine-digit number 785x3678y is divisible by 72, then the value of (7x-5y) is:

If a nine-digit number 985x3678y is divisible by 72, then the value of (4x - 3y) is : यदि 9 अंकों की संख्या 985x3678y 72 से विभाजित है, तो (4x-3y) का मान ज्ञात करें ।

If a nine - digit number 785x3678y is divisible by 72, then the value of (7x-5y) is :

If a nine-digit number 389x6378y is divisible by 72, then the value of sqrt(6x+7y) will be : यदि नौ अंकों की एक संख्या 389x6378y , 72 से विभाजित है, तो sqrt(6x+7y) का मान होगा :

If the 8-digit number 789x531y is divisible by 72, then the value of (5x - 3y) is: यदि आठ अंकों की संख्या 789x531y 72 से विभाज्य है, तो (5x - 3y) का मान ज्ञात करें |

If a six digit number 4x573y is divisible by 72, then the value of (x + y) is: यदि छः अंकों की एक संख्या 4x573y 72 से विभाजित है, तो (x + y) का मान क्या होगा ?

If a 10-digit number 46789x531y is divisible by 72, then the value of (2x + 5y), for the largest value of x is: यदि 10 अंकों की एक संख्या 46789x531y 72 से विभाजित है, तो x का सबसे बड़ा मान लेते हुए (2x + 5y) का मान ज्ञात करें |

If a 10-digit number 1220x558y2 is divisible by 88, then the value of (x + y) is: यदि 10 अंकों की एक संख्या 1220x558y2, 88 से विभाजित है, तो (x + y) का मान ज्ञात करें |