Home
Class 14
MATHS
In triangle ABC, BD bot AC, at D,E is a ...

In `triangle ABC, BD bot AC`, at D,E is a point on BC such that `angle BEA=x^@`. If `angle EAC = 62^@` and `angle EBD = 60^@`, then the value of x is :

A

`78^(@)`

B

`76^@`

C

`92^@`

D

`68^@`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, BD bot AC , at D, E is a point on BC such that angle BEA=x^@ ,If angle EAC = 46^@ and angle EBD=60^@ , then the value of x is: त्रिभुज ABC में, BD bot AC , E, BC पर एक बिंदु इस प्रकार है की angle BEA=x^@ , यदि angle EAC = 46^@ और angle EBD=60^@ , तो x का मान ज्ञात करे |

In Delta ABC BC bot AC at D.E is a point on BC such that angle BEA = x^(@) If angle EAC = 36^(@) and angle EBD = 40^(@) , then the value of x is:

In triangleABC, BD bot AC . E is a point on BC such that angleBEA = x . If angleEAC = 38 and angleEBD = 40^@ , then the value of x is:

In triangle ABC ,BD is perpendicular to AC. E is a point on BC such that angle BEA = x^@ . If angle EAC= 38^@ and angle EBD= 40^@ , then the value of x is: त्रिभुज ABC में,BD, AC पर लम्ब है | E, BC पर स्थित ऐसा बिंदु है कि angle BEA = x^@ है | यदि angle EAC= 38^@ और angle EBD= 40^@ है, तो x का मान क्या होगा ?

In triangle ABC, BD⊥AC is a point on BC such that angle BEA= x^circ . If angle EAC=38^circ and angle EBD=40^circ , then the value of x is: triangle ABC, BD⊥AC है| BC पर E एक बिंदु है, जहां angle BEA= x^circ अगर angle EAC=38^circ और angle EBD=40^circ है तो x का मान हैः

In a triangle ABC, D is a point on BC such that (AB)/(AC)=(BD)/(DC) . If angle B=68^@ and angle C = 52^@ , then measure of angle BAD is equal to: त्रिभुज ABC में, D, BC पर एक बिंदु है जेसे (AB)/(AC)=(BD)/(DC) . If angle B=68^@ और angle C = 52^@ of,तो angle BAD का माप बराबर है:

In a triangle ABC, the side BC is extended up to D. Such that CD = AC, if angleBAD = 109^@ and angle ACB = 72^@ then the value of angleABC is

In a Delta ABC, AB=AC, D is a point BC such that angle BAD=50^(@) and a point E on side AC such that AE =AD find angle CDE