Home
Class 14
MATHS
5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(...

`5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]`

A

7

B

`22/3`

C

`(44)/(7)`

D

`(43)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 5 \frac{5}{6} + \left[ 2 \frac{2}{3} - \left[ 3 \frac{3}{4} \left( \frac{3 \frac{4}{5}}{9 \frac{1}{2}} \right) \right] \right] \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \( 5 \frac{5}{6} \): \[ 5 \frac{5}{6} = \frac{5 \times 6 + 5}{6} = \frac{30 + 5}{6} = \frac{35}{6} \] 2. Convert \( 2 \frac{2}{3} \): \[ 2 \frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{6 + 2}{3} = \frac{8}{3} \] 3. Convert \( 3 \frac{3}{4} \): \[ 3 \frac{3}{4} = \frac{3 \times 4 + 3}{4} = \frac{12 + 3}{4} = \frac{15}{4} \] 4. Convert \( 3 \frac{4}{5} \): \[ 3 \frac{4}{5} = \frac{3 \times 5 + 4}{5} = \frac{15 + 4}{5} = \frac{19}{5} \] 5. Convert \( 9 \frac{1}{2} \): \[ 9 \frac{1}{2} = \frac{9 \times 2 + 1}{2} = \frac{18 + 1}{2} = \frac{19}{2} \] ### Step 2: Rewrite the Expression Now, we can rewrite the expression using the improper fractions: \[ \frac{35}{6} + \left[ \frac{8}{3} - \left[ \frac{15}{4} \left( \frac{19}{5} \div \frac{19}{2} \right) \right] \right] \] ### Step 3: Solve the Division Inside the Brackets To solve \( \frac{19}{5} \div \frac{19}{2} \), we multiply by the reciprocal: \[ \frac{19}{5} \div \frac{19}{2} = \frac{19}{5} \times \frac{2}{19} = \frac{2}{5} \] ### Step 4: Substitute Back into the Expression Now substitute back: \[ \frac{35}{6} + \left[ \frac{8}{3} - \left[ \frac{15}{4} \times \frac{2}{5} \right] \right] \] ### Step 5: Solve the Multiplication Now calculate \( \frac{15}{4} \times \frac{2}{5} \): \[ \frac{15 \times 2}{4 \times 5} = \frac{30}{20} = \frac{3}{2} \] ### Step 6: Substitute and Simplify Now substitute this back into the expression: \[ \frac{35}{6} + \left[ \frac{8}{3} - \frac{3}{2} \right] \] ### Step 7: Find a Common Denominator To subtract \( \frac{8}{3} - \frac{3}{2} \), we need a common denominator, which is 6: \[ \frac{8}{3} = \frac{16}{6}, \quad \frac{3}{2} = \frac{9}{6} \] So, \[ \frac{8}{3} - \frac{3}{2} = \frac{16}{6} - \frac{9}{6} = \frac{7}{6} \] ### Step 8: Add the Fractions Now add \( \frac{35}{6} + \frac{7}{6} \): \[ \frac{35 + 7}{6} = \frac{42}{6} = 7 \] ### Final Answer The final answer is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9(1)/(2))}]

(5)/(8)xx2(3)/(5) div (4)/(9)=?

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

What is the value of [22^((3)/(4)) div (14)/(3) " of " (8-(1)/(5) + 4-2 div (1)/(2))] ?