Home
Class 14
MATHS
The value of 3(1)/(5) - [2(1)/(2) - ((5)...

The value of `3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))]` is :

A

`6/5`

B

`(11)/(10)`

C

`9/(10)`

D

`(13)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3\left(\frac{1}{5}\right) - \left[2\left(\frac{1}{2}\right) - \left(\frac{5}{6} - \left(\frac{2}{5} + \frac{3}{10} - \frac{4}{15}\right)\right)\right]\), we will follow these steps: ### Step 1: Convert mixed fractions to improper fractions First, we convert the mixed fractions into improper fractions: - \(3\left(\frac{1}{5}\right) = \frac{15 + 1}{5} = \frac{16}{5}\) - \(2\left(\frac{1}{2}\right) = \frac{2 \cdot 1 + 1}{2} = \frac{3}{2}\) ### Step 2: Simplify the innermost expression Now, we simplify the innermost expression: \[ \frac{2}{5} + \frac{3}{10} - \frac{4}{15} \] To do this, we need a common denominator. The least common multiple (LCM) of \(5\), \(10\), and \(15\) is \(30\). - Convert each fraction: - \(\frac{2}{5} = \frac{2 \cdot 6}{5 \cdot 6} = \frac{12}{30}\) - \(\frac{3}{10} = \frac{3 \cdot 3}{10 \cdot 3} = \frac{9}{30}\) - \(\frac{4}{15} = \frac{4 \cdot 2}{15 \cdot 2} = \frac{8}{30}\) Now, substituting back: \[ \frac{12}{30} + \frac{9}{30} - \frac{8}{30} = \frac{12 + 9 - 8}{30} = \frac{13}{30} \] ### Step 3: Substitute back into the expression Now we substitute this back into the larger expression: \[ \frac{5}{6} - \frac{13}{30} \] Again, we need a common denominator. The LCM of \(6\) and \(30\) is \(30\). Convert \(\frac{5}{6}\): \[ \frac{5}{6} = \frac{5 \cdot 5}{6 \cdot 5} = \frac{25}{30} \] Now, we can simplify: \[ \frac{25}{30} - \frac{13}{30} = \frac{25 - 13}{30} = \frac{12}{30} = \frac{2}{5} \] ### Step 4: Substitute back into the expression Now we substitute this back into the expression: \[ \frac{3}{2} - \frac{2}{5} \] We need a common denominator again. The LCM of \(2\) and \(5\) is \(10\). Convert each fraction: - \(\frac{3}{2} = \frac{3 \cdot 5}{2 \cdot 5} = \frac{15}{10}\) - \(\frac{2}{5} = \frac{2 \cdot 2}{5 \cdot 2} = \frac{4}{10}\) Now we can simplify: \[ \frac{15}{10} - \frac{4}{10} = \frac{15 - 4}{10} = \frac{11}{10} \] ### Step 5: Final Result Thus, the value of the expression is: \[ \frac{11}{10} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

4(1)/(10)-[2(1)/(2)-{(5)/(6)-((2)/(5)+(3)/(10)-(4)/(15))}]

4(1)/(10)-[2(1)/(2)-{(5)/(6)-((2)/(5)+(3)/(10)-(4)/(15))

Knowledge Check

  • 5 (1)/(5) - [3 (1)/(2) - {(5)/(6) - ((3)/(5) + (1)/(10)-(4)/(15)}] is equal to :

    A
    `(21)/(10)`
    B
    `(7)/(5)`
    C
    `(7)/(3)`
    D
    `(8)/(3)`
  • The value of 6((1)/(5)) - [4((1)/(2)) - {""((1)/(6)) - (""((3)/(5)) + ""((3)/(10)) - ""((7)/(15)))}] is

    A
    2.1
    B
    2.8
    C
    2.5
    D
    None of these
  • The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :

    A
    `3(1)/(2)`
    B
    `1(2)/(3)`
    C
    `4(5)/(6)`
    D
    `1(5)/(6)`
  • Similar Questions

    Explore conceptually related problems

    The value of 3 (5)/(6) + [3 (2)/(3) - {(15)/(4)(5(4)/(5) + 14 (1)/(2)}] is equal to :

    The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

    The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

    The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5))) is

    5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]