Home
Class 14
MATHS
If a^3-b^3=1603 and (a-b)=7, then (a+b)^...

If `a^3-b^3=1603` and (a-b)=7, then `(a+b)^2 -ab` is equal to:

A

`458`

B

`338`

C

229

D

648

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^3-b^3=3552 and (a-b)=6, then (a+b)^2-ab is equal to: यदि a^3-b^3=3552 तथा (a-b)=6 है, तो (a+b)^2-ab किसके बराबर है?

If a^3-b^3=416 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=416 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या है ?

If a^3-b^3=216 and a-b=6, then (a+b)^2 -ab is equal to: यदि a^3-b^3=216 तथा a-b=6, तो (a+b)^2 -ab का मान क्या होगा ?

If a^3-b^3=208 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या होगा ?

If a^3-b^3=208 and a-b=4, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 4, तो (a+b)^2 -ab का मान किसके बराबर है?

If a^3+b^3=110 and a+b=5, then (a+b)^2 -3ab is equal to: यदि a^3+b^3=110 तथा a+b=5, तो (a+b)^2 -3ab का मान क्या होगा ?

If a^3 +b^3 =110 and a+b=5, then (a+b)^2 -3ab is equal to: यदि a^3 +b^3 =110 और a+b=5 है, तो (a+b)^2 -3ab बराबर हैः

If a^(3) - b^(3)= 210 and a-b=5 , then (a+b)^(2)-ab is equal to :

If a^3-b^3=899 and a -b = 31, then (a-b)^2+ 3ab is equal to: यदि a^3+b^3=899 और a -b = 31 है तो (a-b)^2+ 3ab का मान है:

If a^3-b^3=899 and a-b=31, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b=31, तो (a-b)^2 +3ab का मान क्या होगा ?