Home
Class 14
MATHS
If ab + bc + ca = 8 and a+b+c = 12 then...

If `ab + bc + ca = 8` and `a+b+c = 12` then `(a^(2) + b^(2) + c^(2))` is equal to :

A

160

B

128

C

134

D

144

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the identity that relates the squares of the sums of variables to the sum of their squares and their products. The identity we will use is: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Given: 1. \( ab + bc + ca = 8 \) 2. \( a + b + c = 12 \) We need to find \( a^2 + b^2 + c^2 \). ### Step 1: Expand the identity Using the identity, we can expand \( (a + b + c)^2 \): \[ (a + b + c)^2 = 12^2 = 144 \] ### Step 2: Substitute the known values Now, substitute the known values into the identity: \[ 144 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Substituting \( ab + bc + ca = 8 \): \[ 144 = a^2 + b^2 + c^2 + 2 \times 8 \] ### Step 3: Simplify the equation Calculate \( 2 \times 8 \): \[ 2 \times 8 = 16 \] Now substitute this back into the equation: \[ 144 = a^2 + b^2 + c^2 + 16 \] ### Step 4: Isolate \( a^2 + b^2 + c^2 \) To find \( a^2 + b^2 + c^2 \), subtract 16 from both sides: \[ a^2 + b^2 + c^2 = 144 - 16 \] ### Step 5: Perform the final calculation Calculate \( 144 - 16 \): \[ a^2 + b^2 + c^2 = 128 \] Thus, the value of \( a^2 + b^2 + c^2 \) is \( 128 \). ### Final Answer \[ \boxed{128} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=8 and ab +bc +ca =12 , then a^(3) +b^(3) +c^(3) -3abc is equal to :

If a+b+c=8 and ab+bc+ca=20 , then a^(3)+b^(3)+c^(3)-3abc is equal to :

If a + b + c = 8 and ab + bc + ca = 12, then a^3+b^3+c^3-3abc is equal to: यदि a + b + c = 8 है और ab + bc + ca = 12 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?

If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a^4 +b^4 +c^4 is equal to _____