Home
Class 14
MATHS
If x +(1)/(x) = 2sqrt(3) , then x^(2) + ...

If `x +(1)/(x) = 2sqrt(3)` , then `x^(2) + (1)/(x^(2))` is equal to .

A

8

B

16

C

10

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = 2\sqrt{3} \) and we need to find \( x^2 + \frac{1}{x^2} \), we can use a standard algebraic identity. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x + \frac{1}{x} = 2\sqrt{3} \] 2. **Use the identity for \( x^2 + \frac{1}{x^2} \):** The identity states that: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] 3. **Substitute the value of \( x + \frac{1}{x} \) into the identity:** \[ x^2 + \frac{1}{x^2} = \left( 2\sqrt{3} \right)^2 - 2 \] 4. **Calculate \( \left( 2\sqrt{3} \right)^2 \):** \[ \left( 2\sqrt{3} \right)^2 = 4 \cdot 3 = 12 \] 5. **Now substitute this back into the equation:** \[ x^2 + \frac{1}{x^2} = 12 - 2 \] 6. **Perform the subtraction:** \[ x^2 + \frac{1}{x^2} = 10 \] ### Final Answer: Thus, \( x^2 + \frac{1}{x^2} = 10 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x + (1)/(x) = 3 sqrt(2) , then x^(2) + (1)/(x^(2)) is equal to :

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :