Home
Class 14
MATHS
PA and PB are two tangents to a circle w...

PA and PB are two tangents to a circle with centre O, from a point P outside the circle. A and B are points on the circle. If `angleAPB =100^(@)` , then OAB is equal to:

A

`25^(@)`

B

`20^(@)`

C

`35^(@)`

D

`50^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle OAB given that PA and PB are tangents to a circle from point P, and the angle APB is 100 degrees. ### Step-by-Step Solution: 1. **Draw the Circle and Tangents**: - Draw a circle with center O. - Mark point P outside the circle. - Draw tangents PA and PB from point P to the circle, touching the circle at points A and B respectively. 2. **Label the Angles**: - We know that angle APB = 100 degrees. - Since PA and PB are tangents to the circle, the angles between the radius and the tangent at the point of contact are 90 degrees. Thus, angle OAP = 90 degrees and angle OBP = 90 degrees. 3. **Use the Tangent-Secant Angle Theorem**: - According to the theorem, the angle formed between the two tangents from an external point (angle APB) is equal to twice the angle formed at the center of the circle (angle OAB). - Therefore, angle OAP + angle OAB = 90 degrees. 4. **Calculate Angle OAP**: - Since angle APB = 100 degrees, we can find angle OAP: \[ \text{Angle APO} = \frac{1}{2} \times \text{Angle APB} = \frac{1}{2} \times 100 = 50 \text{ degrees} \] 5. **Apply the Triangle Sum Theorem**: - In triangle AOP, we have: \[ \text{Angle OAP} + \text{Angle AOP} + \text{Angle PAM} = 180 \text{ degrees} \] - Substituting the known values: \[ 90 + 50 + \text{Angle PAM} = 180 \] - This simplifies to: \[ \text{Angle PAM} = 180 - 90 - 50 = 40 \text{ degrees} \] 6. **Find Angle OAB**: - Now, we know that: \[ \text{Angle OAP} = \text{Angle PAM} + \text{Angle OAB} \] - Substituting the known values: \[ 90 = 40 + \text{Angle OAB} \] - Rearranging gives: \[ \text{Angle OAB} = 90 - 40 = 50 \text{ degrees} \] ### Conclusion: Thus, the angle OAB is equal to 50 degrees.
Promotional Banner

Similar Questions

Explore conceptually related problems

PA and PB are two tangents to a circle with centre O, from a point P outside the circle A and B are points on the circle. If angle APB=86^@ , then angle OAB is equal to: PA तथा PB केंद्र O वाले वृत के बाहर स्थित बिंदु P से वृत्त पर खींची गयी दो स्पर्श रेखाएं हैं | A और B वृत्त पर स्थित बिंदु हैं | यदि angle APB=86^@ है, तो angle OAB का ज्ञात करें |

PA and PB are two tangents to a circle with centre O, from a point P outside the circle. A and B are points on the circle. If angle OAB=20^@ , then angle APB is equal to: PA तथा PB केंद्र O वाले वृत के बाहर स्थित बिंदु P से वृत्त पर खींची गयी दो स्पर्श रेखाएं हैं | A और B वृत्त पर स्थित बिंदु हैं | यदि angle OAB=20^@ है, तो angle APB का मान कया होगा ?

PA and PB are two tangents to a circle with centre 0. from a point P outside the circle. A and B are points on the circle. If angleAPB= 70^@ then angleOAB is equal to:

PA and PB are two tangents to a circle with centre O, from a point P outside the circle A and B are points on the circle. If angle OAB=38^@ , then angle APB is equal to: PA तथा PB केंद्र O वाले वृत के बाहर स्थित बिंदु P से वृत्त पर खींची गयी दो स्पर्श रेखाएं हैं | A और B वृत्त पर स्थित बिंदु हैं | यदि angle OAB=38^@ , है, तो angle APB का ज्ञात करें |

PA and PB are tangents to a circle with centre O, from a point P outside the circle and A and B are points on the circle. If /_ APB = 30^(@) , then /_ OAB is equal to :

PA and PB are tangents to a circle with centre 0, from a point P outside the circle, and A and B are point on the circle. If angleAPB = 30^(@) , then angleOAB is equal to:

PA and PB are two tangents to a circle with centre O, from P outside the circle. A and B are points on the circle. If angle APB= 100^@ , then angle OAB is equal to : केंद्र O वाले एक वृत्त के बाहर किसी बिंदु P से खींची गई दो स्पर्श रेखाएँ PA और PB हैं | वृत्त पर A और B बिंदु हैं | यदि angle APB= 100^@ ,तो angle OAB का क्या होगा ?

PA and PB are tangents to a circle with centre O, from a point P outside the circle, and A and B are points on the circle. If angle APB= 40^@ , then angle OAB is equal to: PA तथा PB एक वृत्त के बाहर स्थित बिंदु P से वृत्त की स्पर्श रेखाएं हैं जिसका केंद्र O है तथा A और B वृत्त पर स्थित बिंदु हैं | यदि angle APB= 40^@ है, तो angle OAB का मान ज्ञात करें |

PA and PB are two tangents to a circle with centre O from a point P outside the circle.A and B are points on the circle. If angle OAB =35^@ than angle APB is equal to: PA और PB केंद्र O वाले एक एक वृत्त की दो स्पश्रिखाएं हैं जो वृत्त के बाहर स्थित बिंदु P से निकली हैं |A और B वृत्त पर स्थित दो बिंदु हैं | यदि कोण angle OAB =35^@ है, तो कोण APB किसके बराबर होगा ?