Home
Class 14
MATHS
sin18^(@)-cos72^(@) is equal of :...

`sin18^(@)-cos72^(@)` is equal of :

A

4

B

0

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 18^\circ - \cos 72^\circ \), we will follow these steps: ### Step 1: Rewrite \( \cos 72^\circ \) We know from trigonometric identities that: \[ \cos 72^\circ = \sin(90^\circ - 72^\circ) = \sin 18^\circ \] ### Step 2: Substitute \( \cos 72^\circ \) in the expression Now we can substitute \( \cos 72^\circ \) in the original expression: \[ \sin 18^\circ - \cos 72^\circ = \sin 18^\circ - \sin 18^\circ \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ \sin 18^\circ - \sin 18^\circ = 0 \] ### Conclusion Thus, the value of \( \sin 18^\circ - \cos 72^\circ \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sin 18^@-cos 72^@ is equal to : sin 18^@-cos 72^@ का मान क्या होगा ?

cos36^(@)-cos72^(@)=

(2sin18^(@))/(sin48^(@)sin12^(@)) is equal to

sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

cos 38^(@) cos 8^(@) + sin 38^(@)sin 8^(@) is equal to

sin^(2)17.5^(@)+sin^(2)72.5^(@) is equal to

The value of 4 cos 18^(@)-(3)/(cos 18^(@))-2 tan 18^(@) is equal to