Home
Class 14
MATHS
If 5 cos theta-12sintheta=0, the value o...

If `5 cos theta-12sintheta=0,` the value of `overset(2sintheta+costheta) (costheta-sintheta)` is:

A

`1""_(119)^(75)`

B

`3""_(7)^(1)`

C

`2""_(35)^(34)`

D

`3""_(3)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(5 \cos \theta - 12 \sin \theta = 0\) and find the value of \(\frac{2 \sin \theta + \cos \theta}{\cos \theta - \sin \theta}\), we can follow these steps: ### Step 1: Solve for \(\tan \theta\) Starting with the equation: \[ 5 \cos \theta - 12 \sin \theta = 0 \] We can rearrange this to find the ratio of \(\sin \theta\) and \(\cos \theta\): \[ 5 \cos \theta = 12 \sin \theta \] Dividing both sides by \(\cos \theta\) (assuming \(\cos \theta \neq 0\)) gives: \[ 5 = 12 \tan \theta \] Thus, we have: \[ \tan \theta = \frac{5}{12} \] ### Step 2: Determine \(\sin \theta\) and \(\cos \theta\) Using the Pythagorean identity, we can find \(\sin \theta\) and \(\cos \theta\). We can visualize this as a right triangle where the opposite side is 5 and the adjacent side is 12. The hypotenuse \(h\) can be calculated as: \[ h = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{5}{13}, \quad \cos \theta = \frac{12}{13} \] ### Step 3: Substitute into the expression Now we substitute \(\sin \theta\) and \(\cos \theta\) into the expression \(\frac{2 \sin \theta + \cos \theta}{\cos \theta - \sin \theta}\): First, calculate \(2 \sin \theta + \cos \theta\): \[ 2 \sin \theta + \cos \theta = 2 \left(\frac{5}{13}\right) + \frac{12}{13} = \frac{10}{13} + \frac{12}{13} = \frac{22}{13} \] Next, calculate \(\cos \theta - \sin \theta\): \[ \cos \theta - \sin \theta = \frac{12}{13} - \frac{5}{13} = \frac{7}{13} \] ### Step 4: Final calculation Now we can substitute these values back into the expression: \[ \frac{2 \sin \theta + \cos \theta}{\cos \theta - \sin \theta} = \frac{\frac{22}{13}}{\frac{7}{13}} = \frac{22}{7} \] ### Conclusion Thus, the final value is: \[ \frac{22}{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

If 5tantheta-4=0 , then value of (5sintheta-4costheta)/(5sintheta+4costheta) is

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is

A value of theta satifying 4costheta sintheta - 2sintheta =0 is

If, 5cot theta =3 ,Find the value of (6sintheta-3costheta)/(7sintheta+3costheta)

If 3 cot theta =4, " write the value of " ((2costheta+ sintheta ))/((4costheta- sintheta)).

If sintheta + cos theta =1 , then the value of sintheta - costheta is:

If costheta+sintheta=sqrt(2)costheta , then costheta-sintheta is

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

If 5 tan theta =4, " write the value of " ((costheta- sintheta ))/((costheta+ sintheta)).