Home
Class 14
MATHS
If a^3+b^3=432 and a+b=12, then (a+b)^2 ...

If `a^3+b^3=432` and a+b=12, then `(a+b)^2 -3ab` is equal to:
यदि `a^3+b^3=432` तथा a+b=12, तो `(a+b)^2 -3ab` का मान क्या होगा ?

A

42

B

52

C

36

D

38

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^3+b^3=110 and a+b=5, then (a+b)^2 -3ab is equal to: यदि a^3+b^3=110 तथा a+b=5, तो (a+b)^2 -3ab का मान क्या होगा ?

If a^3-b^3=208 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या होगा ?

If a^3-b^3=216 and a-b=6, then (a+b)^2 -ab is equal to: यदि a^3-b^3=216 तथा a-b=6, तो (a+b)^2 -ab का मान क्या होगा ?

If a^3+b^3=1344 and a+b= 28, then (a+b)^2 -3ab is equal to: यदि a^3+b^3=1344 तथा a+b= 28, तो (a+b)^2 -3ab का मान किसके बराबर होगा ?

If a^3-b^3=899 and a-b=31, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b=31, तो (a-b)^2 +3ab का मान क्या होगा ?

If a^3-b^3=416 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=416 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या है ?

If a^3-b^3=1603 and (a-b)=7, then (a+b)^2 -ab is equal to: यदि a^3-b^3=1603 तथा (a-b)=7, तो (a+b)^2 -ab का मान किसके बराबर होगा ?

If a^3-b^3=208 and a-b=4, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 4, तो (a+b)^2 -ab का मान किसके बराबर है?

If a^3-b^3=899 and a-b=29, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b= 29, तो (a-b)^2 +3ab का मान ज्ञात करें |

If a^3+b^3=416 and a+b=16, then (a-b)^2 +ab is equal to: यदि a^3+b^3=416 तथा a+b=16 है, तो (a-b)^2 +ab का मान ज्ञात करें |