Home
Class 14
MATHS
What is the value of (203 + 107)^(2) - ...

What is the value of `(203 + 107)^(2) - (203-107)^(2)?`

A

85886

B

86884

C

43442

D

87884

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (203 + 107)^{2} - (203 - 107)^{2} \), we can use the algebraic identity for the difference of squares. ### Step-by-Step Solution: 1. **Identify the expression**: We have \( (203 + 107)^{2} - (203 - 107)^{2} \). 2. **Let \( A = 203 \) and \( B = 107 \)**: This gives us \( (A + B)^{2} - (A - B)^{2} \). 3. **Use the difference of squares formula**: The difference of squares states that \( x^{2} - y^{2} = (x - y)(x + y) \). Here, let \( x = A + B \) and \( y = A - B \). 4. **Calculate \( x - y \) and \( x + y \)**: - \( x - y = (A + B) - (A - B) = A + B - A + B = 2B \). - \( x + y = (A + B) + (A - B) = A + B + A - B = 2A \). 5. **Substitute back into the difference of squares**: Therefore, we have: \[ (A + B)^{2} - (A - B)^{2} = (2B)(2A) = 4AB. \] 6. **Substitute the values of \( A \) and \( B \)**: Now, substitute \( A = 203 \) and \( B = 107 \): \[ 4AB = 4 \times 203 \times 107. \] 7. **Calculate \( 4 \times 203 \times 107 \)**: - First, calculate \( 203 \times 107 \): \[ 203 \times 107 = 21721. \] - Now multiply by 4: \[ 4 \times 21721 = 86884. \] 8. **Final Result**: Thus, the value of \( (203 + 107)^{2} - (203 - 107)^{2} \) is \( 86884 \). ### Final Answer: The value is \( 86884 \). ---
Promotional Banner