Home
Class 14
MATHS
What is value of [(1)/(1-x^((p-q)))+(1)/...

What is value of `[(1)/(1-x^((p-q)))+(1)/(1-x^((q-p)))]`?

A

0

B

1

C

`(x^(q)-x^(p)//(x^(q)+x^(p))`

D

`(x^(q)+x^(p))//(x^(q)-x^(p))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left[\frac{1}{1 - x^{(p - q)}} + \frac{1}{1 - x^{(q - p)}}\right]\), we will follow these steps: ### Step 1: Rewrite the Expression We start with the given expression: \[ \frac{1}{1 - x^{(p - q)}} + \frac{1}{1 - x^{(q - p)}} \] ### Step 2: Identify the Terms Notice that \(x^{(q - p)}\) can be rewritten as \(\frac{1}{x^{(p - q)}}\). Thus, we can rewrite the second term: \[ \frac{1}{1 - x^{(q - p)}} = \frac{1}{1 - \frac{1}{x^{(p - q)}}} \] ### Step 3: Simplify the Second Term To simplify \(\frac{1}{1 - \frac{1}{x^{(p - q)}}}\), we can find a common denominator: \[ 1 - \frac{1}{x^{(p - q)}} = \frac{x^{(p - q)} - 1}{x^{(p - q)}} \] Thus, the second term becomes: \[ \frac{x^{(p - q)}}{x^{(p - q)} - 1} \] ### Step 4: Combine the Two Terms Now we have: \[ \frac{1}{1 - x^{(p - q)}} + \frac{x^{(p - q)}}{x^{(p - q)} - 1} \] We can find a common denominator for these two fractions: \[ (1 - x^{(p - q)})(x^{(p - q)} - 1) \] ### Step 5: Write the Combined Fraction The combined fraction becomes: \[ \frac{(x^{(p - q)} - 1) + (1 - x^{(p - q)})}{(1 - x^{(p - q)})(x^{(p - q)} - 1)} \] The numerator simplifies to: \[ x^{(p - q)} - 1 + 1 - x^{(p - q)} = 0 \] ### Step 6: Conclusion Since the numerator is zero, the entire expression evaluates to zero: \[ \frac{0}{(1 - x^{(p - q)})(x^{(p - q)} - 1)} = 0 \] Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner