Home
Class 14
MATHS
What is the simplified value of (2s...

What is the simplified value of `(2sin^(3)theta-sintheta)/(costheta-2cos^(3)theta)`?

A

`tan theta `

B

`sin theta `

C

`cos theta`

D

`cot theta`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

(sintheta+sin2theta)/(1+costheta+cos2theta) =

The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is equal to

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

What is the simplified value of [(cos^(2) theta)/(1+sin theta)- (sin^(2) theta)/(1 + cos theta)]^(2) ?

Find the value of 2(sintheta^(6)+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is