Home
Class 14
MATHS
If x and y are positive acute angles suc...

If x and y are positive acute angles such that `sin(2x + 3y) = (sqrt(3))/(2)` and `cos(4x - 3y) = (sqrt(3))/(2)`, then what is the value of `tan(6x - 3y)` ?

A

0

B

1

C

`1//sqrt""3`

D

`sqrt""3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given equations and find the value of \( \tan(6x - 3y) \). ### Step 1: Analyze the first equation We have: \[ \sin(2x + 3y) = \frac{\sqrt{3}}{2} \] The value of \( \sin \theta = \frac{\sqrt{3}}{2} \) corresponds to angles: \[ 2x + 3y = 60^\circ \quad \text{(1)} \] or \[ 2x + 3y = 120^\circ \quad \text{(2)} \] ### Step 2: Analyze the second equation Next, we have: \[ \cos(4x - 3y) = \frac{\sqrt{3}}{2} \] The value of \( \cos \theta = \frac{\sqrt{3}}{2} \) corresponds to angles: \[ 4x - 3y = 30^\circ \quad \text{(3)} \] or \[ 4x - 3y = 330^\circ \quad \text{(4)} \] ### Step 3: Solve the equations We will consider the first pair of equations (1) and (3): 1. \( 2x + 3y = 60^\circ \) 2. \( 4x - 3y = 30^\circ \) Now, we can add these two equations: \[ (2x + 3y) + (4x - 3y) = 60^\circ + 30^\circ \] This simplifies to: \[ 6x = 90^\circ \] Thus, we find: \[ x = 15^\circ \] ### Step 4: Substitute \( x \) back to find \( y \) Now we can substitute \( x = 15^\circ \) back into equation (1): \[ 2(15^\circ) + 3y = 60^\circ \] This simplifies to: \[ 30^\circ + 3y = 60^\circ \] Subtracting \( 30^\circ \) from both sides gives: \[ 3y = 30^\circ \] Thus, we find: \[ y = 10^\circ \] ### Step 5: Calculate \( \tan(6x - 3y) \) Now we need to find \( \tan(6x - 3y) \): \[ 6x - 3y = 6(15^\circ) - 3(10^\circ) = 90^\circ - 30^\circ = 60^\circ \] Thus, \[ \tan(6x - 3y) = \tan(60^\circ) = \sqrt{3} \] ### Final Answer The value of \( \tan(6x - 3y) \) is: \[ \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are positive acute angles such that sin(4x - y) = 1 and cos(2x + y) = 1/2, then what is the value of cot (x + 2y)?

If (cos x)/(cos y)=2 and cos(x-y)=(sqrt(3))/(2) then tan y=

If sin(x+y)=cos[3(x+y)] then what is the value of tan[2(x+y)]

if x and y are acute angles such that cos x+cos y=(3)/(2) and sin x+sin y=(3)/(4) then sin(x+y)=

if x+y=(2 pi)/(3) and cos x+cos y=(sqrt(3))/(2) then x,y is equal to:

If x=(1+i sqrt(3))/(2), then the value of y=x^(4)-x^(2)+6x-4 is

If x-4y= 0 and x+2y= 24 , then what is the value of (2x+3y)//(2x-3y) ?

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)

If (cos x)/(cos y)=2 and cos(x-y)=(sqrt(3))/(2) then tan y=sqrt(alpha)-beta value of alpha-beta=