Home
Class 14
MATHS
If 3 cot theta = 4 cos theta, then what ...

If `3 cot theta = 4 cos theta`, then what is the value of `cos 2theta`?

A

`2//16`

B

`-1//8`

C

`7//16`

D

`9//16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cot \theta = 4 \cos \theta\) and find the value of \(\cos 2\theta\), we can follow these steps: ### Step 1: Rewrite the cotangent function We know that: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] Substituting this into the equation gives us: \[ 3 \frac{\cos \theta}{\sin \theta} = 4 \cos \theta \] ### Step 2: Simplify the equation Assuming \(\cos \theta \neq 0\), we can divide both sides by \(\cos \theta\): \[ 3 \frac{1}{\sin \theta} = 4 \] This simplifies to: \[ \frac{3}{\sin \theta} = 4 \] ### Step 3: Solve for \(\sin \theta\) Cross-multiplying gives: \[ 3 = 4 \sin \theta \] Thus, we can find \(\sin \theta\): \[ \sin \theta = \frac{3}{4} \] ### Step 4: Use the Pythagorean identity to find \(\cos \theta\) Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \left(\frac{3}{4}\right)^2 + \cos^2 \theta = 1 \] This leads to: \[ \frac{9}{16} + \cos^2 \theta = 1 \] Subtracting \(\frac{9}{16}\) from both sides gives: \[ \cos^2 \theta = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] ### Step 5: Find \(\cos 2\theta\) We can use the double angle formula for cosine: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Substituting \(\cos^2 \theta = \frac{7}{16}\): \[ \cos 2\theta = 2 \cdot \frac{7}{16} - 1 = \frac{14}{16} - 1 = \frac{14}{16} - \frac{16}{16} = \frac{-2}{16} = -\frac{1}{8} \] ### Final Answer Thus, the value of \(\cos 2\theta\) is: \[ \cos 2\theta = -\frac{1}{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos ec theta+cot theta=c then what is the value of cos theta

If 3"sin"theta+5"cos"theta=4 , then what is the value of (3"cos"theta-5"sin"theta)^(2) ?

If sin theta_1+sin theta_2+sin theta_3+sin theta_4=4 , then what is the value of cos theta_1+cos theta_2+cos theta_3+cos theta_4=?

If cos theta=(3)/(5) then the value of cot theta is :

If cos ec theta-cot theta=3 then find the value of sin theta

If cosec theta-cot theta=(1)/(sqrt3) ,where theta ne 0 then what is the value of cos theta ?

If "tan" (pi "cos" theta) = "cot"(pi "sin" theta), then the value(s) of "cos" (theta-(pi)/(4)) , is (are)

If 3 cot theta = 4 , then the value of (5 sin theta+ 3 cos theta)/(5 sin theta - 3 cos theta) is