Home
Class 14
MATHS
If "cosec"^(2) theta + cot^(2) theta = 7...

If `"cosec"^(2) theta + cot^(2) theta = 7`, then what is the value (in degrees) of `theta`?

A

15

B

30

C

45

D

60

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc^2 \theta + \cot^2 \theta = 7 \), we can follow these steps: ### Step 1: Use the Pythagorean identity We know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \] Substituting this into the original equation gives: \[ 1 + \cot^2 \theta + \cot^2 \theta = 7 \] ### Step 2: Simplify the equation Combine the cotangent terms: \[ 1 + 2\cot^2 \theta = 7 \] ### Step 3: Isolate the cotangent term Subtract 1 from both sides: \[ 2\cot^2 \theta = 7 - 1 \] \[ 2\cot^2 \theta = 6 \] ### Step 4: Solve for \( \cot^2 \theta \) Divide both sides by 2: \[ \cot^2 \theta = \frac{6}{2} \] \[ \cot^2 \theta = 3 \] ### Step 5: Take the square root Taking the square root of both sides gives: \[ \cot \theta = \sqrt{3} \] ### Step 6: Find the angle \( \theta \) The value of \( \theta \) for which \( \cot \theta = \sqrt{3} \) is: \[ \theta = 30^\circ \] Thus, the value of \( \theta \) is \( 30^\circ \). ### Final Answer \[ \theta = 30^\circ \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosec^(2)theta+cot^(2)theta=7 , what is the value (in degrees) of theta ?

cosec^2 theta - cot^2 theta = 1 +…..

cosec^(2)theta-cot^(2)theta-1

cosec^(2)theta=1+cot^(2)theta

If "cosec"^(2) theta + 2 cot^(2) theta=10 , then find the value of sin theta + cos theta when 0^(@) lt theta lt 90^(@)

If "cosec"theta - cot theta =m , then what is "cosec"theta equal to?

If tan ^(2) theta + cot^(2) theta = 2 , then what is the value of 2^(sec theta cosec theta ) ?

Solve cosec^(2)theta-cot^(2) theta=cos theta .

If tan theta + cot theta =2 , then what is the value of tan^7 theta + cot ^7 theta ?