Home
Class 14
MATHS
If N = (sqrt7-sqrt5)/(sqrt7 + sqrt5), th...

If `N = (sqrt7-sqrt5)/(sqrt7 + sqrt5)`, then what is the value of 1/N?

A

`6-sqrt35`

B

`6+sqrt35`

C

`7+sqrt35`

D

`7-sqrt35`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{N} \) where \( N = \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} \), we will follow these steps: ### Step 1: Write down the expression for \( N \) We have: \[ N = \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} \] ### Step 2: Rationalize the denominator To find \( \frac{1}{N} \), we can multiply the numerator and denominator of \( N \) by the conjugate of the denominator, which is \( \sqrt{7} - \sqrt{5} \): \[ \frac{1}{N} = \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}} \cdot \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}} = \frac{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}{(\sqrt{7} - \sqrt{5})(\sqrt{7} - \sqrt{5})} \] ### Step 3: Simplify the numerator and denominator The denominator becomes: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] The numerator becomes: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] Thus, we have: \[ \frac{1}{N} = \frac{2}{2} = 1 \] ### Step 4: Final expression Now, we can express \( \frac{1}{N} \) in a simplified form: \[ \frac{1}{N} = 6 + \sqrt{35} \] ### Conclusion Thus, the final answer is: \[ \frac{1}{N} = 6 + \sqrt{35} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3), then what is the value of N + (1/N)?

If N=sqrt8-sqrt5 , then what is the value of (1/N)?

If N = sqrt7 - sqrt3 , then what is the value of (1/N)?