Home
Class 14
MATHS
What is the simplified value of (2 sin^3...

What is the simplified value of `(2 sin^3 theta-sin theta)/(cos theta - 2 cos^3 theta)` ?

A

`tan theta`

B

`sin theta`

C

`cos theta`

D

`cot theta`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((2 \sin^3 \theta - \sin \theta) / (\cos \theta - 2 \cos^3 \theta)\), we can follow these steps: ### Step 1: Factor the numerator The numerator \(2 \sin^3 \theta - \sin \theta\) can be factored: \[ \sin \theta (2 \sin^2 \theta - 1) \] This is because we can take out \(\sin \theta\) as a common factor. ### Step 2: Factor the denominator The denominator \(\cos \theta - 2 \cos^3 \theta\) can also be factored: \[ \cos \theta (1 - 2 \cos^2 \theta) \] This is because we can take out \(\cos \theta\) as a common factor. ### Step 3: Rewrite the expression Now we can rewrite the original expression using the factored forms: \[ \frac{\sin \theta (2 \sin^2 \theta - 1)}{\cos \theta (1 - 2 \cos^2 \theta)} \] ### Step 4: Use trigonometric identities We know that: \[ 2 \sin^2 \theta - 1 = \cos 2\theta \] and \[ 1 - 2 \cos^2 \theta = -\cos 2\theta \] Thus, we can substitute these identities into our expression: \[ \frac{\sin \theta \cos 2\theta}{\cos \theta (-\cos 2\theta)} \] ### Step 5: Simplify the expression The \(\cos 2\theta\) terms cancel out (assuming \(\cos 2\theta \neq 0\)): \[ \frac{\sin \theta}{-\cos \theta} = -\tan \theta \] ### Final Result Thus, the simplified value of the expression is: \[ -\tan \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of (2sin^(3)theta-sintheta)/(costheta-2cos^(3)theta) ?

The value of (sin theta - 2 sin^3 theta)/(2 cos^3 theta-cos theta) is

What is the simplified value of [(cos^(2) theta)/(1+sin theta)- (sin^(2) theta)/(1 + cos theta)]^(2) ?

If tan theta = 4/3 ,then the value of (3 sin theta + 2cos theta)/(3 sin theta - 2 cos theta) is

If 3cot theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If 3tan theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

What is the value of [(cos 3 theta + 2cos 5 theta+ cos 7 theta)/(cos theta + 2cos 3 theta + cos 5 theta)] + sin 2 theta tan 3 theta ? [(cos 3 theta + 2cos 5 theta+ cos 7 theta)/(cos theta + 2cos 3 theta + cos 5 theta)] + sin 2 theta tan 3 theta का मान क्या है?

What is the value of [(cos^3 2 theta+ 3 cos 2 theta)div (cos^6 theta- sin^6 theta)] ? [(cos^3 2 theta+ 3 cos 2 theta)div (cos^6 theta- sin^6 theta)] का मान क्या है?

The value of sin^6 theta+ cos^6 theta + 3 cos^2 theta sin^2 theta is