Home
Class 14
MATHS
If 3x^2 - 9x + 3 = 0, then what is the v...

If `3x^2 - 9x + 3 = 0`, then what is the value of `(x + 1/x)^3` ?

A

9

B

729

C

81

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3x^2 - 9x + 3 = 0\) and find the value of \((x + \frac{1}{x})^3\), we can follow these steps: ### Step 1: Simplify the equation Start with the given equation: \[ 3x^2 - 9x + 3 = 0 \] We can factor out a 3 from the equation: \[ 3(x^2 - 3x + 1) = 0 \] This simplifies to: \[ x^2 - 3x + 1 = 0 \] ### Step 2: Solve the quadratic equation Now we will use the quadratic formula to find the roots of the equation \(x^2 - 3x + 1 = 0\). The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -3\), and \(c = 1\). Plugging in these values: \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{3 \pm \sqrt{9 - 4}}{2} \] \[ x = \frac{3 \pm \sqrt{5}}{2} \] ### Step 3: Find \(x + \frac{1}{x}\) Next, we need to find \(x + \frac{1}{x}\). We can use the identity: \[ x + \frac{1}{x} = \frac{x^2 + 1}{x} \] Calculating \(x^2\) from our quadratic equation: \[ x^2 = 3x - 1 \] Thus: \[ x + \frac{1}{x} = \frac{(3x - 1) + 1}{x} = \frac{3x}{x} = 3 \] ### Step 4: Calculate \((x + \frac{1}{x})^3\) Now we can find \((x + \frac{1}{x})^3\): \[ (x + \frac{1}{x})^3 = 3^3 = 27 \] ### Final Answer Thus, the value of \((x + \frac{1}{x})^3\) is: \[ \boxed{27} \]
Promotional Banner