Home
Class 14
MATHS
What is the value of ((tan^2 x - sin^2 x...

What is the value of `((tan^2 x - sin^2 x))/(sec^2x)` ?

A

`sin^4 x`

B

`cos^2 x`

C

`sin^2 x`

D

`cos^4 x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\tan^2 x - \sin^2 x}{\sec^2 x}\), we will follow these steps: ### Step 1: Rewrite \(\tan^2 x\) and \(\sec^2 x\) in terms of \(\sin x\) and \(\cos x\) We know that: \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \] and \[ \sec^2 x = \frac{1}{\cos^2 x} \] ### Step 2: Substitute these identities into the expression Substituting these identities into the expression gives us: \[ \frac{\frac{\sin^2 x}{\cos^2 x} - \sin^2 x}{\frac{1}{\cos^2 x}} \] ### Step 3: Simplify the numerator To simplify the numerator: \[ \frac{\sin^2 x}{\cos^2 x} - \sin^2 x = \frac{\sin^2 x - \sin^2 x \cos^2 x}{\cos^2 x} \] Now factor out \(\sin^2 x\): \[ \frac{\sin^2 x (1 - \cos^2 x)}{\cos^2 x} \] ### Step 4: Use the Pythagorean identity Using the Pythagorean identity \(1 - \cos^2 x = \sin^2 x\), we can substitute: \[ \frac{\sin^2 x \cdot \sin^2 x}{\cos^2 x} = \frac{\sin^4 x}{\cos^2 x} \] ### Step 5: Divide by \(\sec^2 x\) Now, we can rewrite the entire expression: \[ \frac{\sin^4 x}{\cos^2 x} \cdot \cos^2 x = \sin^4 x \] ### Final Answer Thus, the value of the expression \(\frac{\tan^2 x - \sin^2 x}{\sec^2 x}\) is: \[ \sin^4 x \]
Promotional Banner