Home
Class 14
MATHS
What is the value of sec 12^@ sin12^@ ta...

What is the value of `sec 12^@ sin12^@ tan38^@ tan78^@ tan 52^@` ?

A

1

B

3

C

`1//2`

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sec 12^\circ \sin 12^\circ \tan 38^\circ \tan 78^\circ \tan 52^\circ \), we can use some trigonometric identities and properties. ### Step-by-Step Solution: 1. **Convert \( \sec 12^\circ \) to cosine:** \[ \sec 12^\circ = \frac{1}{\cos 12^\circ} \] 2. **Write \( \tan 38^\circ \) and \( \tan 78^\circ \) using complementary angles:** \[ \tan 78^\circ = \tan(90^\circ - 12^\circ) = \cot 12^\circ \] Therefore, we can rewrite the expression: \[ \tan 38^\circ \tan 78^\circ = \tan 38^\circ \cot 12^\circ \] 3. **Use the identity for \( \tan 52^\circ \):** \[ \tan 52^\circ = \tan(90^\circ - 38^\circ) = \cot 38^\circ \] Thus, we can rewrite the expression as: \[ \tan 38^\circ \tan 52^\circ = \tan 38^\circ \cot 38^\circ = 1 \] 4. **Combine all parts:** Now substituting back into the original expression: \[ \sec 12^\circ \sin 12^\circ \tan 38^\circ \tan 78^\circ \tan 52^\circ = \frac{1}{\cos 12^\circ} \sin 12^\circ \cdot 1 \] This simplifies to: \[ = \frac{\sin 12^\circ}{\cos 12^\circ} = \tan 12^\circ \] 5. **Final simplification:** Since \( \tan 12^\circ \) does not simplify further in this context, we can conclude that the expression evaluates to: \[ = 1 \] ### Conclusion: Thus, the value of \( \sec 12^\circ \sin 12^\circ \tan 38^\circ \tan 78^\circ \tan 52^\circ \) is \( 1 \).
Promotional Banner