Home
Class 14
MATHS
What is the value of (sec theta)/(tan th...

What is the value of `(sec theta)/(tan theta +cot theta)` ?

A

`cos theta`

B

`tan theta`

C

`sin theta`

D

`cot theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sec \theta}{\tan \theta + \cot \theta}\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting \(\sec \theta\), \(\tan \theta\), and \(\cot \theta\) in terms of sine and cosine: - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) ### Step 2: Substitute these values into the expression Now, we substitute these values into the expression: \[ \frac{\sec \theta}{\tan \theta + \cot \theta} = \frac{\frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}} \] ### Step 3: Simplify the denominator Next, we simplify the denominator: \[ \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \] To combine these fractions, we find a common denominator, which is \(\sin \theta \cos \theta\): \[ = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} \] Using the Pythagorean identity, \(\sin^2 \theta + \cos^2 \theta = 1\), we can simplify this to: \[ = \frac{1}{\sin \theta \cos \theta} \] ### Step 4: Substitute back into the expression Now we substitute this back into our expression: \[ \frac{\frac{1}{\cos \theta}}{\frac{1}{\sin \theta \cos \theta}} = \frac{1}{\cos \theta} \times \frac{\sin \theta \cos \theta}{1} = \frac{\sin \theta}{1} = \sin \theta \] ### Conclusion Thus, the value of \(\frac{\sec \theta}{\tan \theta + \cot \theta}\) is: \[ \sin \theta \] ### Final Answer The correct answer is \(\sin \theta\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta=(5)/(4), find the value of (sin theta-2cos theta)/(tan theta-cot theta)

What is the value of tan theta xx cot theta ?

If (tan theta)/(tan theta- tan 3 theta)=1/3 find the value of (cot theta)/(cot theta- cot 3 theta)

If (tan theta)/(tan theta-tan3 theta)=(1)/(3), find the value of (cot theta)/(cot theta-cot3 theta)

The value of (sec^2 theta(2+tan^2 theta +cot^2 theta) div (sin^2 theta-tan^2 theta))/((cosec^2 theta+sec^2 theta)(1+ cot^2 theta)^2) is: (sec^2 theta(2+tan^2 theta +cot^2 theta) div (sin^2 theta-tan^2 theta))/((cosec^2 theta+sec^2 theta)(1+ cot^2 theta)^2) का मान ज्ञात कीजिए?

If cos theta=-(3)/(5) and pi

If sec theta+tan theta=x, obtain the values of sec theta,tan theta and sin theta

Prove that (sin theta- "cosec" theta )(cos theta- sec theta )=(1)/(tan theta + cot theta).