Home
Class 14
MATHS
What is the value of (sin theta)/(1-cot ...

What is the value of `(sin theta)/(1-cot theta) - (cos theta)/(1- tan theta)`

A

`sin theta + cos theta `

B

`sin theta - cos theta`

C

`1//(sin theta + cos theta)`

D

`1//(sin theta - cos theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin \theta}{1 - \cot \theta} - \frac{\cos \theta}{1 - \tan \theta}\), we will follow these steps: ### Step 1: Rewrite cotangent and tangent in terms of sine and cosine We know that: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \quad \text{and} \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Using these definitions, we can rewrite the expression: \[ \frac{\sin \theta}{1 - \cot \theta} = \frac{\sin \theta}{1 - \frac{\cos \theta}{\sin \theta}} = \frac{\sin \theta}{\frac{\sin \theta - \cos \theta}{\sin \theta}} = \frac{\sin^2 \theta}{\sin \theta - \cos \theta} \] Similarly, \[ \frac{\cos \theta}{1 - \tan \theta} = \frac{\cos \theta}{1 - \frac{\sin \theta}{\cos \theta}} = \frac{\cos \theta}{\frac{\cos \theta - \sin \theta}{\cos \theta}} = \frac{\cos^2 \theta}{\cos \theta - \sin \theta} \] ### Step 2: Substitute back into the expression Now substituting these back into the original expression: \[ \frac{\sin^2 \theta}{\sin \theta - \cos \theta} - \frac{\cos^2 \theta}{\cos \theta - \sin \theta} \] Notice that \(\cos \theta - \sin \theta = -(\sin \theta - \cos \theta)\). Thus, we can rewrite the second term: \[ \frac{\sin^2 \theta}{\sin \theta - \cos \theta} + \frac{\cos^2 \theta}{\sin \theta - \cos \theta} \] ### Step 3: Combine the fractions Now we can combine the two fractions: \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta - \cos \theta} \] Using the Pythagorean identity, we know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus, the expression simplifies to: \[ \frac{1}{\sin \theta - \cos \theta} \] ### Final Result Therefore, the value of the expression is: \[ \frac{1}{\sin \theta - \cos \theta} \]
Promotional Banner