Home
Class 12
MATHS
If alpha = lim(x rarr pi//4)""(tan^(3)x ...

If `alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4)))` and `beta = lim_(x rarr 0)(cos x)^(cot x)` are the roots of the equation, `a x^(2) + bx -4 = 0`, then the ordered pair (a, b) is :

A

`(1, -3)`

B

`(-1, 3)`

C

`(1, 3)`

D

`(-1, -3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(cos x)^(cot x)

lim_(x rarr0)(cos ecx-cot x)

lim_(x rarr0+)(ln cot x)^(tan x)

lim_(x rarr0+)(ln cot x)^(tan x)=

Evaluate: (lim)_(x rarr0)(cos x)^(cot x)

lim_(x rarr0)x^(4)cos(2/x)

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

lim_(x rarr0)(tan x^(3))/(x)