Home
Class 14
MATHS
If ab + bc + ca = 8 and a^2+b^2+c^2=20, ...

If ab + bc + ca = 8 and `a^2+b^2+c^2=20`, then a possible value of `1/2 (a + b + c) [(a-b)^2+(b-c)^2+(c-a)^2]` is
यदि ab + bc + ca = 8 है और `a^2+b^2+c^2=20`, है, तो `1/2 (a + b + c) [(a-b)^2+(b-c)^2+(c-a)^2]` का संभावित मान है :

A

72

B

57

C

80

D

84

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c in R and a^(2)+b^(2)+c^(2)=1, then the possible values of [ab+bc+ca] are

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :

If ab + bc + ca = 8 and a+b+c = 12 then (a^(2) + b^(2) + c^(2)) is equal to :

If a + b + c = 0, then the value of a^2/(bc) +b^2/(ca)+c^2/(ab) is : यदि a + b + c = 0 तो a^2/(bc) +b^2/(ca)+c^2/(ab) का मान ज्ञात करें