Home
Class 14
MATHS
Let a= ( 2 sin x )/(1 + sin x + cos x )...

Let ` a= ( 2 sin x )/(1 + sin x + cos x ) and b = ( c )/(1+ sin x ) . ` Then a = b , if c= ?

A

` 1 + sin x cos x `

B

` 1 + sin x - cos x `

C

` 1 + cos x - sin x `

D

` 1- sin x cos x `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( c \) such that \( a = b \) where: \[ a = \frac{2 \sin x}{1 + \sin x + \cos x} \] \[ b = \frac{c}{1 + \sin x} \] ### Step 1: Set the equations equal to each other Since \( a = b \), we can write: \[ \frac{2 \sin x}{1 + \sin x + \cos x} = \frac{c}{1 + \sin x} \] ### Step 2: Cross-multiply to eliminate the fractions Cross-multiplying gives us: \[ 2 \sin x (1 + \sin x) = c (1 + \sin x + \cos x) \] ### Step 3: Expand both sides Expanding both sides results in: \[ 2 \sin x + 2 \sin^2 x = c + c \sin x + c \cos x \] ### Step 4: Rearranging the equation Rearranging the equation to isolate \( c \): \[ 2 \sin^2 x + 2 \sin x - c \sin x - c \cos x - c = 0 \] ### Step 5: Collect like terms Rearranging gives us: \[ (2 - c) \sin x + 2 \sin^2 x - c \cos x - c = 0 \] ### Step 6: Compare coefficients For the equation to hold for all \( x \), the coefficients of \( \sin x \) and \( \cos x \) must be equal. Thus, we can derive two equations: 1. \( 2 - c = 0 \) (coefficient of \( \sin x \)) 2. \( -c = 0 \) (coefficient of \( \cos x \)) ### Step 7: Solve for \( c \) From the first equation: \[ c = 2 \] From the second equation, since it is \( -c = 0 \), it confirms that \( c \) must be \( 2 \). ### Final Answer Thus, the value of \( c \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if a=(1+sin x)/(1-cos x+sin x) then (1+cos x+sin x)/(2sin x) is

integral of 1/(a sin x+b cos x+c)

int(sin((5x)/2))/(sin((x)/(2))) dx is euqal to (A) x + 2 sin x + sin 2x +C (B) x +2 cos x + sin 2x +C (C) x - 2sin x + sin 2x +C (D) x + 2 sin x - sin 2x + C

If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then

If quad tan A=(x sin B)/(1-x cos B) and tan B=(y sin A)/(1-y cos A) then (sin A)/(sin B)=

If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy)/(dx) = ?

If int ( cos x - sin x )/( sqrt(8 - sin 2x ))dx = a sin^(-1) (( sin x + cos x )/(b)) +c , where c is a constant of integration, then the ordered pair (a, b) is equal to :