Home
Class 14
MATHS
The value of (9)/(15) " of " ((2)/(3)...

The value of ` (9)/(15) " of " ((2)/(3) // (2)/(3) " of " (3)/(2)) ÷ ((3)/(4) xx (3)/(4) ÷ (3)/(4) " of " (4)/(3)) " of " ((5)/(4) ÷ (5)/(2) xx (2)/(5) " of " (4)/(5)) ` is :

A

` (18)/(125)`

B

` (20)/(9)`

C

` (4)/(25)`

D

` (40)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will break it down into manageable parts. The expression is: \[ \frac{9}{15} \text{ of } \left( \frac{2}{3} \text{ of } \left( \frac{2}{3} \text{ of } \frac{3}{2} \right) \right) \div \left( \left( \frac{3}{4} \times \frac{3}{4} \div \left( \frac{3}{4} \text{ of } \frac{4}{3} \right) \right) \text{ of } \left( \frac{5}{4} \div \frac{5}{2} \times \left( \frac{2}{5} \text{ of } \frac{4}{5} \right) \right) \right) \] ### Step 1: Solve the first part We first solve the innermost expression: \[ \frac{2}{3} \text{ of } \left( \frac{2}{3} \text{ of } \frac{3}{2} \right) \] Calculating the inner part: \[ \frac{2}{3} \text{ of } \frac{3}{2} = \frac{2}{3} \times \frac{3}{2} = 1 \] Now substituting back: \[ \frac{2}{3} \text{ of } 1 = \frac{2}{3} \] ### Step 2: Solve the second part Next, we calculate: \[ \frac{3}{4} \times \frac{3}{4} \div \left( \frac{3}{4} \text{ of } \frac{4}{3} \right) \] Calculating the "of" part: \[ \frac{3}{4} \text{ of } \frac{4}{3} = \frac{3}{4} \times \frac{4}{3} = 1 \] Now substituting back: \[ \frac{3}{4} \times \frac{3}{4} \div 1 = \frac{9}{16} \] ### Step 3: Solve the third part Now we calculate: \[ \frac{5}{4} \div \frac{5}{2} \times \left( \frac{2}{5} \text{ of } \frac{4}{5} \right) \] Calculating the "of" part: \[ \frac{2}{5} \text{ of } \frac{4}{5} = \frac{2}{5} \times \frac{4}{5} = \frac{8}{25} \] Now substituting back: \[ \frac{5}{4} \div \frac{5}{2} = \frac{5}{4} \times \frac{2}{5} = \frac{2}{4} = \frac{1}{2} \] Now combining: \[ \frac{1}{2} \times \frac{8}{25} = \frac{8}{50} = \frac{4}{25} \] ### Step 4: Combine all parts Now we combine everything: \[ \frac{9}{15} \text{ of } \left( \frac{2}{3} \right) \div \left( \frac{9}{16} \text{ of } \left( \frac{4}{25} \right) \right) \] Calculating the "of" part: \[ \frac{9}{16} \text{ of } \frac{4}{25} = \frac{9}{16} \times \frac{4}{25} = \frac{36}{400} = \frac{9}{100} \] Now substituting back: \[ \frac{9}{15} \times \frac{2}{3} \div \frac{9}{100} \] Calculating: \[ \frac{9}{15} \times \frac{2}{3} = \frac{18}{45} = \frac{2}{5} \] Now dividing: \[ \frac{2}{5} \div \frac{9}{100} = \frac{2}{5} \times \frac{100}{9} = \frac{200}{45} = \frac{40}{9} \] ### Final Answer Thus, the final value of the expression is: \[ \frac{40}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

((2)/(3)+(4)/(9))" of "(3)/(5)+1(2)/(3)times1(1)/(4)-(1)/(3)

5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

(3/2 xx (-7)/4) - ((-5)/2 xx 3/4)