Home
Class 14
MATHS
If tan^(2)theta - 3sectheta + 3=0, 0^(@)...

If `tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@)`, then the value of `sintheta + cos theta` is:

A

A) `3sqrt(3)`

B

B) `(5sqrt(3))/3`

C

C) `2sqrt(3)`

D

D) `(5sqrt(3))/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^2 \theta - 3 \sec \theta + 3 = 0 \) for \( 0^\circ < \theta < 90^\circ \) and find the value of \( \sin \theta + \cos \theta \), we can follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] Thus, we can rewrite \( \tan^2 \theta \) and \( \sec \theta \): \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] Substituting this into the equation gives: \[ \frac{\sin^2 \theta}{\cos^2 \theta} - 3 \cdot \frac{1}{\cos \theta} + 3 = 0 \] ### Step 2: Multiply through by \( \cos^2 \theta \) to eliminate the denominator Multiplying the entire equation by \( \cos^2 \theta \) (noting that \( \cos \theta \neq 0 \) in the given range): \[ \sin^2 \theta - 3 \cos \theta + 3 \cos^2 \theta = 0 \] ### Step 3: Use the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) From the identity, we can express \( \sin^2 \theta \) as: \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into the equation gives: \[ 1 - \cos^2 \theta - 3 \cos \theta + 3 \cos^2 \theta = 0 \] This simplifies to: \[ (1 + 2 \cos^2 \theta - 3 \cos \theta) = 0 \] ### Step 4: Rearranging the equation Rearranging gives: \[ 2 \cos^2 \theta - 3 \cos \theta + 1 = 0 \] ### Step 5: Solve the quadratic equation Let \( x = \cos \theta \). The equation becomes: \[ 2x^2 - 3x + 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \] This gives us: \[ x = \frac{4}{4} = 1 \quad \text{or} \quad x = \frac{2}{4} = \frac{1}{2} \] ### Step 6: Determine the values of \( \theta \) Since \( \cos \theta = 1 \) corresponds to \( \theta = 0^\circ \) (not in the range), we take \( \cos \theta = \frac{1}{2} \), which corresponds to: \[ \theta = 60^\circ \] ### Step 7: Calculate \( \sin \theta + \cos \theta \) Now we find: \[ \sin 60^\circ + \cos 60^\circ = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2} \] ### Final Answer Thus, the value of \( \sin \theta + \cos \theta \) is: \[ \frac{\sqrt{3} + 1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the value of theta is

If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt theta lt 90^(@) , then the value of theta is

lf 2 cos 3theta = sqrt3 and 0^@ lt theta lt 90^@ then the value of theta is