Home
Class 14
MATHS
The value of (3)/(4) xx 2 (2)/(3) -: (5)...

The value of `(3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3)` is :

A

`3(1)/(2)`

B

`1(2)/(3)`

C

`4(5)/(6)`

D

`1(5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will follow the order of operations (BODMAS/BIDMAS: Brackets, Orders, Division/Multiplication, Addition/Subtraction). ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert all mixed numbers to improper fractions: - \(2 \frac{2}{3} = \frac{8}{3}\) - \(1 \frac{1}{5} = \frac{6}{5}\) - \(3 \frac{5}{6} = \frac{23}{6}\) - \(2 \frac{1}{3} = \frac{7}{3}\) Now, rewrite the expression: \[ \frac{3}{4} \times \frac{8}{3} \div \frac{5}{9} \text{ of } \frac{6}{5} + \frac{2}{23} \times \frac{23}{6} \div \frac{2}{7} \text{ of } \frac{7}{3} \] ### Step 2: Replace "of" with Multiplication The term "of" indicates multiplication. Thus, we rewrite the expression: \[ \frac{3}{4} \times \frac{8}{3} \div \frac{5}{9} \times \frac{6}{5} + \frac{2}{23} \times \frac{23}{6} \div \frac{2}{7} \times \frac{7}{3} \] ### Step 3: Simplify Each Part 1. For the first part: \[ \frac{3}{4} \times \frac{8}{3} \div \frac{5}{9} \times \frac{6}{5} \] - First, calculate \(\frac{3}{4} \times \frac{8}{3}\): \[ = \frac{3 \times 8}{4 \times 3} = \frac{8}{4} = 2 \] - Now, calculate \(2 \div \frac{5}{9} = 2 \times \frac{9}{5} = \frac{18}{5}\). - Then, multiply by \(\frac{6}{5}\): \[ = \frac{18}{5} \times \frac{6}{5} = \frac{108}{25} \] 2. For the second part: \[ \frac{2}{23} \times \frac{23}{6} \div \frac{2}{7} \times \frac{7}{3} \] - First, calculate \(\frac{2}{23} \times \frac{23}{6} = \frac{2 \times 23}{23 \times 6} = \frac{2}{6} = \frac{1}{3}\). - Now, calculate \(\frac{1}{3} \div \frac{2}{7} = \frac{1}{3} \times \frac{7}{2} = \frac{7}{6}\). - Then, multiply by \(\frac{7}{3}\): \[ = \frac{7}{6} \times \frac{7}{3} = \frac{49}{18} \] ### Step 4: Combine the Results Now we combine the two parts: \[ \frac{108}{25} + \frac{49}{18} \] To add these fractions, we need a common denominator. The least common multiple of 25 and 18 is 450. - Convert \(\frac{108}{25}\) to have a denominator of 450: \[ \frac{108 \times 18}{25 \times 18} = \frac{1944}{450} \] - Convert \(\frac{49}{18}\) to have a denominator of 450: \[ \frac{49 \times 25}{18 \times 25} = \frac{1225}{450} \] Now add the two fractions: \[ \frac{1944 + 1225}{450} = \frac{3169}{450} \] ### Step 5: Final Result The final result is: \[ \frac{3169}{450} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (9)/(15) " of " ((2)/(3) // (2)/(3) " of " (3)/(2)) ÷ ((3)/(4) xx (3)/(4) ÷ (3)/(4) " of " (4)/(3)) " of " ((5)/(4) ÷ (5)/(2) xx (2)/(5) " of " (4)/(5)) is :

The value of (9)/(15) " of " ((2)/(3) // (2)/(3) " of " (3)/(2)) ÷ ((3)/(4) xx (3)/(4) ÷ (3)/(4) " of " (4)/(3)) " of " ((5)/(4) ÷ (5)/(2) xx (2)/(5) " of " (4)/(5)) is :

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12