Home
Class 14
MATHS
If tan 4 theta = cot (2 theta +30^(@)), ...

If `tan 4 theta = cot (2 theta +30^(@))`, then `theta` is equal to :

A

`15^(@)`

B

`10^(@)`

C

`20^(@)`

D

`25^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 4\theta = \cot(2\theta + 30^\circ) \), we can follow these steps: ### Step 1: Rewrite the cotangent function We know that \( \cot x = \tan(90^\circ - x) \). Therefore, we can rewrite the equation as: \[ \tan 4\theta = \tan(90^\circ - (2\theta + 30^\circ)) \] ### Step 2: Simplify the right side Now, simplify the right side: \[ 90^\circ - (2\theta + 30^\circ) = 90^\circ - 2\theta - 30^\circ = 60^\circ - 2\theta \] Thus, we have: \[ \tan 4\theta = \tan(60^\circ - 2\theta) \] ### Step 3: Set the angles equal Since the tangent function is periodic, we can set the angles equal to each other: \[ 4\theta = 60^\circ - 2\theta + n \cdot 180^\circ \quad \text{(where \( n \) is any integer)} \] ### Step 4: Solve for \( \theta \) For the simplest case, let \( n = 0 \): \[ 4\theta + 2\theta = 60^\circ \] \[ 6\theta = 60^\circ \] \[ \theta = \frac{60^\circ}{6} = 10^\circ \] ### Step 5: Conclusion Thus, the value of \( \theta \) is: \[ \theta = 10^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan 4theta = cot(40^@ – 2theta) , then theta is equal to:

If tan 4 theta=cot(40^@-2 theta) , then theta is equal to: यदि tan 4 theta=cot(40^@-2 theta) है, तो theta किसके बराबर है?

If tan theta + cot theta = 2 , then theta is

(cot2 theta-cot3 theta)/(cot theta) is equal to

If tan theta+tan4 theta+tan7 theta=tan theta tan4 theta tan7 theta, then theta is equal to

Iftan theta+tan4 theta+tan7 theta=tan theta tan4 theta tan7 theta then theta is equal to:

If tan theta + cot theta =2, " then " tan^(2) theta + cot^(2) theta is equal to