Home
Class 14
MATHS
If sqrt(x)+(1)/(sqrt(x)) =sqrt(6), then ...

If `sqrt(x)+(1)/(sqrt(x)) =sqrt(6)`, then `x^(2)+(1)/(x^(2))` is equal to :

A

16

B

62

C

36

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{6} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{6} \] Now, we will square both sides: \[ \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = (\sqrt{6})^2 \] ### Step 2: Expand the left side Expanding the left side gives: \[ \left(\sqrt{x}\right)^2 + 2 \cdot \sqrt{x} \cdot \frac{1}{\sqrt{x}} + \left(\frac{1}{\sqrt{x}}\right)^2 = 6 \] This simplifies to: \[ x + 2 + \frac{1}{x} = 6 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation: \[ x + \frac{1}{x} + 2 = 6 \] Subtracting 2 from both sides gives: \[ x + \frac{1}{x} = 4 \] ### Step 4: Square again to find \( x^2 + \frac{1}{x^2} \) Next, we square both sides again: \[ \left(x + \frac{1}{x}\right)^2 = 4^2 \] Expanding the left side: \[ x^2 + 2 + \frac{1}{x^2} = 16 \] ### Step 5: Isolate \( x^2 + \frac{1}{x^2} \) Now, we isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} + 2 = 16 \] Subtracting 2 from both sides gives: \[ x^2 + \frac{1}{x^2} = 16 - 2 \] Thus, \[ x^2 + \frac{1}{x^2} = 14 \] ### Final Answer The value of \( x^2 + \frac{1}{x^2} \) is \( 14 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :