Home
Class 14
MATHS
If a+b+c=8 and ab +bc +ca =12, then a^(3...

If `a+b+c=8 and ab +bc +ca =12`, then `a^(3) +b^(3) +c^(3) -3abc` is equal to :

A

a) 144

B

b) 400

C

c) 224

D

d) 192

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \) given the equations \( a + b + c = 8 \) and \( ab + bc + ca = 12 \). ### Step-by-Step Solution: 1. **Use the identity for cubes**: We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This means we need to calculate \( a^2 + b^2 + c^2 \) first. 2. **Calculate \( a^2 + b^2 + c^2 \)**: We know from the first equation that: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting the known values: \[ 8^2 = a^2 + b^2 + c^2 + 2(12) \] This simplifies to: \[ 64 = a^2 + b^2 + c^2 + 24 \] Rearranging gives: \[ a^2 + b^2 + c^2 = 64 - 24 = 40 \] 3. **Substitute values into the identity**: Now we substitute \( a + b + c = 8 \) and \( a^2 + b^2 + c^2 = 40 \) into the identity: \[ a^2 + b^2 + c^2 - ab - ac - bc = 40 - 12 = 28 \] 4. **Calculate \( a^3 + b^3 + c^3 - 3abc \)**: Now we can substitute back into our identity: \[ a^3 + b^3 + c^3 - 3abc = (8)(28) = 224 \] Thus, the final answer is: \[ \boxed{224} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b + c = 6 and ab + bc + ca = 5, then a^3 + b^3 + c^3 - 3abc is equal to: