Home
Class 14
MATHS
If sqrt(x) + (1)/(sqrt(x)) = sqrt(7), th...

If `sqrt(x) + (1)/(sqrt(x)) = sqrt(7)`, then `x^(3) + (1)/(x^(3))` is equal to :

A

120

B

130

C

140

D

110

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x)-1/sqrt(x)= x=2-sqrt(3)

If x = sqrt(7 - 4 sqrt(3)) , then x + (1)/(x) is equal to :

If sqrt(y-x)+sqrt(y+x)=1" then "(d^(3)y)/(dx^(3)) at x=1 is equal to

If x = 7 - 4 sqrt(3) , then sqrt(x) + (1)/(sqrt(x)) is equal to

((1+x).3sqrt(x))/(sqrt(x))

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .

If x=sqrt(3)-sqrt(2) then (1)/(x^(3))-x^(3)=